Filming microscopic and macroscopic changes within materials

Sketch of the new set-up at EDDI. The high-speed camera (blue box) is on top of the sample holder.

Sketch of the new set-up at EDDI. The high-speed camera (blue box) is on top of the sample holder. © Marlen Paeplow/HZB

The EDDI beamline at BESSY II is now offering even more options. It has recently become possible to also obtain high-resolution three-dimensional images of microscopic structure with it, up to four such tomographies per second are possible. X-ray diffraction (energy-dispersive diffraction) can simultaneously be carried out to draw conclusions about the crystal structure of the material just as before.

Dr. Catalina Jiménez and Dr. Francisco García-Moreno, in charge of this option at the beamline, suggested this innovation in late 2013 and have now successfully implemented it. EDDI uses the complete energy spectrum of BESSY II X-ray pulses to rapidly create diffraction images that provide insight about the lattice structure and separation of atoms in the sample.

Constructing the sensor head:

However, some of the X-rays travel unobstructed through the sample without being diffracted. This beam can now be transformed by a scintillator crystal into visible light and recorded by a camera. By rotating the sample, you obtain three-dimensional images in a process called tomography.
Realising this was not trivial. The sensor head with the scintillator crystal had to be situated close to the sample without hindering the path of the diffracted beam. “We worked closely on this with the HZB workshop”, García-Moreno reports.

Observing processes in energy materials

The sample table can be rotated and is equipped with sliding electrical contacts so that batteries can be investigated during their charging process, for example. There are also various ways to heat or cool the sample while measurements are being taken. “For example, we can observe changes that take place in batteries while charging, how hydrogen becomes deposited in steel, as well as investigating many other questions to do with energy materials”, explains Jiménez.

Up to four tomograohic images per second

In the mean time, the team has demonstrated that the performance is even higher than expected. “We originally assumed that one complete tomographic image of a sample would take several seconds. But now we are even managing to do a diffraction spectrum simultaneously with up to one complete tomographic image per second, or up to four tomographic images per second by themselves. That means we can observe and film rapid changes in samples and correlate them with the corresponding phases in the material,” says García-Moreno. This feature has already been brought online in user operations and the first user groups with interesting proposals have already applied for beam time.

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.