BESSY II electron highway gets second lane

The picture illustrates a hypothetical highway with the second path winding around the first one. Experimenters at the beamlines could then either use the dense sequence of light pulses from the primary electron path or select individual light pulses from the secondary orbital track.

The picture illustrates a hypothetical highway with the second path winding around the first one. Experimenters at the beamlines could then either use the dense sequence of light pulses from the primary electron path or select individual light pulses from the secondary orbital track. © Heike Cords/HZB

The particle accelerator team at Helmholtz-Zentrum Berlin (HZB) has demonstrated that BESSY II, the 3rd generation synchrotron radiation source in Berlin, can be operated with not just one, but two simultaneous electron paths. By precisely tuning the magnetic components, physicists can create an additional orbital path. Packets of electrons can travel along it and emit intense light pulses at the experiment stations. This could provide the user community with the option to select light pulses from either path as needed in their experiments. The newly developed orbital mode has already been stably implemented and initial tests at the experiment stations (beamlines) show promising results. HZB is the first to enter this new territory and at the same time has reached another milestone in its pioneering BESSY-VSR project.

In simplest terms, the path of the electrons in BESSY II is comparable to a highway with only a single lane up to now. The packets of electrons in the storage ring would correspond to convoys of cars that travel along this circular route while flashing their headlights at specific locations to provide the experiments along the beamlines with pulses of light. Now a team from the HZB Institute for Accelerator Physics has established a second lane in which individual packets of electrons circulate.

Full control

Using special settings of the magnetic focussing componentry, an additional orbit is formed within the storage ring in addition to the original one, winding around it. “We are able to precisely monitor and control the packets of electrons this way and implement basically any desired fill pattern”, says Prof. Andreas Jankowiak, who heads the HZB Institute for Accelerator Physics. The physicists refer to the sequence of the electron packets and intervals between them as the fill pattern. Staying with the analogy of a highway, a fill pattern could be regarded as individual cars or convoys, all separated at specific intervals, for example.

More options for science community

This advance will considerably broaden the features offered by BESSY II to the user community, and extend the methods available today for selecting individual light pulses. For example, one could use the new technique to fill the primary electron path with groups of electron packets that produce light pulses in rapid succession, while placing individual electron packets in the secondary orbit. These would then generate light pulses with longer intervals, which is ideal for quite a few experiments.

Outlook BESSY-VSR

Jankowiak adds: “This advance is immediately of use for us in our BESSY-VSR (variable storage ring) upgrade project as well. We expect to be able to generate ultra-short as well as longer light pulses with BESSY-VSR, which we could then insert into the two different electron paths.”

The paper was presented on IPAC 2015:

arö

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.