Emergence of a “devil’s staircase” in a spin-valve system

Hexagonal single crystal of SrCo<sub>6</sub>O<sub>11</sub>, with a sample diameter of approximately 0,2 millimetres.

Hexagonal single crystal of SrCo6O11, with a sample diameter of approximately 0,2 millimetres.

The material exhibits distinct magnetization plateau connected with different spin configurations.

The material exhibits distinct magnetization plateau connected with different spin configurations.

A Japanese-German team observes at BESSY II how spins form unusual magnetic structures in a complex cobalt oxide single crystal. Such a material offers new perspectives for spintronic applications.

While classical GMR systems are composed of metallic layers, complex oxides often intrinsically provide layered structures with alternating magnetic configurations that can act as spin valves. Cobalt oxides are a class of materials that can exhibit complex magnetic order that changes with increasing magnetic field, as for example indicated by distinct plateaux in the magnetization curve.

Magnetic structures mapped

A Japanese team of researchers led by the group of Associate Professor Hiroki Wadati at the University of Tokyo has been successful in characterizing the magnetic structures of the complex cobalt oxide SrCo6O11 using the high-field diffractometer of BESSY II. Synthesis of new materials often results in tiny samples, and the crystals studied here had a diameter of only 0.2 mm. With the very high sensitivity of resonant diffraction, a core competence at the UE46_PGM1 beamline of BESSY II, they managed to observe a fascinating type of spin order in the samples that are hardly visible by the bare eye. This order is called devil’s staircase, characterizing a phenomenon, where a pletora, in principle even an infinite number, of so-called commensurate superstructures - magnetic configurations in the present case - can be realized by tuning an external parameter, e.g., a magnetic field.

New options with a Devil's staircase

This exceeds the characteristic of a spin valve and may open new paths in spintronics. The research was carried out in close cooperation with German scientists from the Institut für Festkörper-und Werkstoffforschung Dresden and HZB. The results are now published in Physical Review Letters.

Reference:  T. Matsuda, S. Partzsch, T. Tsuyama, E. Schierle, E. Weschke, J. Geck, T. Saito, S. Ishiwata, Y. Tokura, and H. Wadati, "Observation of a Devil’s Staircase in the Novel Spin-Valve System SrCo6O11", Physical Review Letters 114 (236403-1-5):
doi:10.1103/PhysRevLett.114.236403.

Eugen Weschke

  • Copy link

You might also be interested in

  • Research up close! The Long Night of Science at HZB
    News
    20.06.2025
    Research up close! The Long Night of Science at HZB
    On 28 June, it's that time again: the Long Night of Science will take place from 5 pm to midnight  in Berlin and also in Adlershof! Come around and take a look behind the scenes of our exciting research.
  • HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    News
    19.06.2025
    HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) and the National University of "Kyiv-Mohyla Academy" (NaUKMA) have signed a Memorandum of Understanding (MoU). The MoU serves as the starting point for collaborative research, academic exchange, and capacity-building between the two institutions. Actions will be taken to establish the Joint Research and Policy Laboratory at NaUKMA in Kyiv. The aim of the future laboratory is to jointly develop research and policy analysis, focusing on the energy and climate dimensions of Ukraine’s EU integration.
  • MAX IV and BESSY II initiate new collaboration to advance materials science
    News
    17.06.2025
    MAX IV and BESSY II initiate new collaboration to advance materials science
    Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.