New opportunities for CIGS solar cells

PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners.

PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners. © A. Kubatzki/HZB

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB.

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB. © A. Kubatzki/HZB

Dynamic CIGS solar cell technology workshop gives rise to optimism: experts predict higher efficiencies and lean production technologies

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB at HZB in Berlin-Adlershof from 29. to 30. April.  They reported new, exciting results, ranging from record module efficiencies and significant module manufacturing simplification to solid scientific understanding of the underlying atomic-scale physics and chemistry.

CIGS-thin film solar cells are based on compound semiconductors consisting of the elements Copper, Indium, Gallium and Selenium and Sulphur. They are the most efficient thin-film solar cell technology to date. PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners. “We have seen very remarkable improvements in CIGS technology over the past year and many exciting new industrial and academic results were presented at the workshop”, says Rutger Schlatmann, head of the institute PVcomB at the HZB, explicitly mentioning following examples:

•    A strong increase in world record cell efficiency to almost 22%, and a clear, scientifically based outlook towards 25% cells in the coming years.
•    World record module efficiencies well above 16%.
•    Restart of CIGS production capacity in Germany and upcoming remarkable expansion of production capacity worldwide.
•    Production process simplifications (e.g. reduction of number of process steps).
•    Very promising results in the field of wet processing, e.g. electrochemical deposition.
•    Improved process control achieving a remarkable 98% process yield.
•    Product development for very specific applications (large solar power plants with very low cost electrical power, aesthetic appearance and flexibility in design for BIPV).
“Summarizing the impressions of the workshop, there is a powerful community of CIGS technologists and academics. Many of them report rapid progress in development and there is an optimistic view on the successful growth of CIGS photovoltaics” Schlatmann concludes.

red/arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • Rutger Schlatmann re-elected as ETIP PV Chair
    News
    24.10.2024
    Rutger Schlatmann re-elected as ETIP PV Chair
    The European Technology and Innovation Platform for Photovoltaics (ETIP PV) was created by the European Commission in order to promote photovoltaic technologies and industries in Europe. Now, the ETIP PV Steering Committee elected a new Chair, as well as two Vice-Chairs for the term 2024 – 2026. Rutger Schlatmann, head of the division Solar Energy at the HZB, and professor at HTW Berlin, was re-elected as the ETIP PV Chair.
  • Perovskite solar cells: TEAM PV develops reproducibility and comparability
    News
    22.10.2024
    Perovskite solar cells: TEAM PV develops reproducibility and comparability
    Ten teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.