Leading scientists on topological insulators met in Berlin

Outstanding researchers took part in the “New Trends in Topological Insulators 2014” - workshop.

Outstanding researchers took part in the “New Trends in Topological Insulators 2014” - workshop.

From July 7-10, 150 researchers met in Berlin to discuss recent findings in the field of topological insulators.

Topological insulators are a rather new form of quantum matter with an insulating bulk and a metallic surface created by topologically protected and spin polarized electronic states.

Outstanding researchers took part in the “New Trends in Topological Insulators 2014” - workshop, organized by Gustav Bihlmayer (Forschungszentrum Jülich) and Saskia Fischer (Humboldt University and Oliver Rader of HZB. 20 speakers had been invited for presentations, the 2012 Buckley Prize winners Shoucheng Zhang and Laurens W. Molenkamp (also Leibniz Prize 2014), Zhi-Xun Shen (Buckley prize 2011) and Yoichi Ando (2014 Inoue Prize for Science) being among them. 

Breakthrough results were delivered on topics such as optical excitation, electron-photon entangled states, the role of electron correlation as well as imaging of helical edge states and Majorana fermions.

The event took place on the premises of the Berlin-Brandenburg Academy of Sciences. It has been generously supported by DFG as well as HZB.

Oliver Rader / kmh


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.