Under cover of graphene

Phoenex-Apparatus<br />

Phoenex-Apparatus
© HZB

Researchers at Helmholtz-Zentrum Berlin have developed a method to conserve electronic surface states using graphene.

Scientists at Helmholtz-Zentrum Berlin (HZB), together with colleagues from Dresden and Jülich, have succeeded in making the electronic surface-state of a metal extra-durable. To this end, they seal the surface of the metal iridium with a layer of carbon that has the thickness of a single atom. This modification of carbon known as graphene proves to be an efficient shield against outside influences. This ability to preserve the  electronic surface-state is of paramount interest for spintronics. The HZB scientists have published their findings today in the journal "Physical Review Letters" (DOI: 10.1103/PhysRevLett.108.066804).

Spintronics employs the magnetic moment - the spin - of electrons in order to process information. Surfaces are particularly well suited for distinguishing electrons with different spin, due to what physicists call a "broken symmetry". The electrons at the surface, on the other hand, are extremely active and easily form a chemical bond, with oxygen for example. Therefore, it has only been possible to preserve a particular spin state under extreme conditions, e.g. ultrahigh vacuum.

In their successful experiments to conserve the electronic surface structure, HZB researchers tested the metal iridium. "We treated the metal catalytically with propylene gas, a hydrocarbon" says project leader Dr. Andrei Varykhalov from the HZB department for magnetization dynamics. The surface allows for two competing reactions, explains Varykhalov, of which the graphenization wins out. "In this way, a single layer of carbon atoms forms on the iridium."

HZB researchers  studied this graphene layer as well as the spin states of the top layer of the metal with sophisticated analytical methods at the electron storage ring BESSY II. Their instrument contains an apparatus from particle physics, a so-called spin detector.

"At first, we were able to demonstrate that the spin states of the iridium do not change under the gaphene layer. This was in agreement with model calculations made by researchers in Jülich" Varykhalov explains. "In a second step we found that they also persist in the air". This is considered an important progress for spintronics. Varykhalov: "Our graphene-covered iridium is still a model system for research. If we succeed with graphene to also conserve the spin states of an insulator, we can bring realistic applications for spintronics within reach."

HS

  • Copy link

You might also be interested in

  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.