HZB-Forscher stoßen Tor für die Festkörperphysik auf

An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische R&ouml;ntgenstreuung verst&auml;rken kann, bei der eine Frequenzverschiebung stattfindet.<br>&copy;HZB/E. Strickert

An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische Röntgenstreuung verstärken kann, bei der eine Frequenzverschiebung stattfindet.
©HZB/E. Strickert

Laserprozesse jetzt auch mit Röntgenstrahlen am Festkörper beobachtet

Die physikalische Grundlagenforschung wäre ohne die Vielzahl der heute verwendeten Röntgenmethoden nicht mehr denkbar. In der Festkörperphysik werden sie genutzt, bei biologischen Strukturuntersuchungen ebenfalls, und sogar Kunsthistoriker verdanken den Röntgenstrahlen viele Erkenntnisse. Nun haben Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) eine weitere Anwendungsoption erschlossen. Ein Team um Dr. Martin Beye und Prof. Alexander Föhlisch hat gezeigt, dass Feststoffe auch für Röntgenmessungen zugänglich sind, die auf nichtlinearen physikalischen Effekten beruhen. Bislang war dies nur bei Messungen mit Laserlicht möglich. Sie veröffentlichen ihre Arbeit in der online vorab erscheinenden Ausgabe der Zeitschrift Nature (DOI: 10.1038/nature12449). Ihre Ergebnisse können Einfluss darauf haben, wie neue Röntgenquellen zukünftig konstruiert sein müssen.  

So genannte nichtlineare Effekte sind die Grundlage der kompletten Laserphysik. Für Röntgenuntersuchungen schienen sie bislang nicht nutzbar zu sein. Die Physik, die den Röntgenmethoden bisher zugrunde liegt, basiert ausschließlich auf linearen Effekten. Das heißt, wenn die Strahlung auf ein Untersuchungsobjekt trifft, arbeitet jedes Lichtteilchen - das Photon - für sich alleine.

Anders bei Lasern. Die Energie- und Leistungsdichte von eingestrahltem Laserlicht kann so hoch werden, dass die Photonen zusammenarbeiten und beim Wechselwirken mit Materie nichtlineare Effekte auftreten. Dies hat zur Folge, dass Materialien bestimmte Farben des Lichts extrem verstärken. Mit anderen Worten: man bestrahlt einen Kristall mit grünem Licht, das ausgesendete Licht ist rot. Die ausgesendete Farbe kann dabei sehr genau mit Struktureigenschaften des untersuchten Stoffes korreliert werden.

Dass man solche Effekte nun auch mit weicher Röntgenstrahlung erzielen kann und Feststoffe diesem Messprinzip zugänglich sind, hat die Gruppe um Alexan¬der Föhlisch vom HZB nun mit Experimenten an der Hamburger Kurzpulsquelle FLASH am DESY nachgewiesen. „Der Wirkungsgrad von inelastischen Streuprozessen mit weicher Röntgenstrahlung ist normalerweise schlecht“, erläutert Martin Beye, der Erstautor der vorliegenden Arbeit: „Mit unserem Experiment zeigen wir, wie man inelastische Röntgenstreuung geschickt verstärken kann. Ähnlich wie beim Laser arbeiten alle Photonen zusammen und verstärken sich gegenseitig. Wir erhalten so ein sehr hohes Messsignal.“

Mit solchen Aufbauten an Röntgenquellen können zukünftig inelastische Röntgenstreuprozesse effizient genutzt werden, etwa um sehr schnelle Prozesse zu analysieren und zu verstehen. Zum Beispiel das Aufbrechen und Entstehen chemischer Bindungen, Anregungen in Quantenmaterialien (zum Beispiel Supraleitern) sowie ultraschnelle Schaltprozesse.

„Heutige Röntgenquellen sind für die Anwendung von stimulierter inelastischer Streuung gar nicht optimiert“, sagt Alexander Föhlisch. „Mit dem jetzt vorliegenden Ergebnis wissen wir, dass wir auch mit weicher Röntgenstrahlung nichtlineare Effekte nutzen können. Wir brauchen dafür Photonenquellen, die schnell hintereinander kurze Lichtpulse liefern können. Dies gilt es bei der Entwicklung zukünftiger Photonenquellen zu berücksichtigen.“

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.