HZB-Forscher stoßen Tor für die Festkörperphysik auf

An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische R&ouml;ntgenstreuung verst&auml;rken kann, bei der eine Frequenzverschiebung stattfindet.<br>&copy;HZB/E. Strickert

An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische Röntgenstreuung verstärken kann, bei der eine Frequenzverschiebung stattfindet.
©HZB/E. Strickert

Laserprozesse jetzt auch mit Röntgenstrahlen am Festkörper beobachtet

Die physikalische Grundlagenforschung wäre ohne die Vielzahl der heute verwendeten Röntgenmethoden nicht mehr denkbar. In der Festkörperphysik werden sie genutzt, bei biologischen Strukturuntersuchungen ebenfalls, und sogar Kunsthistoriker verdanken den Röntgenstrahlen viele Erkenntnisse. Nun haben Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) eine weitere Anwendungsoption erschlossen. Ein Team um Dr. Martin Beye und Prof. Alexander Föhlisch hat gezeigt, dass Feststoffe auch für Röntgenmessungen zugänglich sind, die auf nichtlinearen physikalischen Effekten beruhen. Bislang war dies nur bei Messungen mit Laserlicht möglich. Sie veröffentlichen ihre Arbeit in der online vorab erscheinenden Ausgabe der Zeitschrift Nature (DOI: 10.1038/nature12449). Ihre Ergebnisse können Einfluss darauf haben, wie neue Röntgenquellen zukünftig konstruiert sein müssen.  

So genannte nichtlineare Effekte sind die Grundlage der kompletten Laserphysik. Für Röntgenuntersuchungen schienen sie bislang nicht nutzbar zu sein. Die Physik, die den Röntgenmethoden bisher zugrunde liegt, basiert ausschließlich auf linearen Effekten. Das heißt, wenn die Strahlung auf ein Untersuchungsobjekt trifft, arbeitet jedes Lichtteilchen - das Photon - für sich alleine.

Anders bei Lasern. Die Energie- und Leistungsdichte von eingestrahltem Laserlicht kann so hoch werden, dass die Photonen zusammenarbeiten und beim Wechselwirken mit Materie nichtlineare Effekte auftreten. Dies hat zur Folge, dass Materialien bestimmte Farben des Lichts extrem verstärken. Mit anderen Worten: man bestrahlt einen Kristall mit grünem Licht, das ausgesendete Licht ist rot. Die ausgesendete Farbe kann dabei sehr genau mit Struktureigenschaften des untersuchten Stoffes korreliert werden.

Dass man solche Effekte nun auch mit weicher Röntgenstrahlung erzielen kann und Feststoffe diesem Messprinzip zugänglich sind, hat die Gruppe um Alexan¬der Föhlisch vom HZB nun mit Experimenten an der Hamburger Kurzpulsquelle FLASH am DESY nachgewiesen. „Der Wirkungsgrad von inelastischen Streuprozessen mit weicher Röntgenstrahlung ist normalerweise schlecht“, erläutert Martin Beye, der Erstautor der vorliegenden Arbeit: „Mit unserem Experiment zeigen wir, wie man inelastische Röntgenstreuung geschickt verstärken kann. Ähnlich wie beim Laser arbeiten alle Photonen zusammen und verstärken sich gegenseitig. Wir erhalten so ein sehr hohes Messsignal.“

Mit solchen Aufbauten an Röntgenquellen können zukünftig inelastische Röntgenstreuprozesse effizient genutzt werden, etwa um sehr schnelle Prozesse zu analysieren und zu verstehen. Zum Beispiel das Aufbrechen und Entstehen chemischer Bindungen, Anregungen in Quantenmaterialien (zum Beispiel Supraleitern) sowie ultraschnelle Schaltprozesse.

„Heutige Röntgenquellen sind für die Anwendung von stimulierter inelastischer Streuung gar nicht optimiert“, sagt Alexander Föhlisch. „Mit dem jetzt vorliegenden Ergebnis wissen wir, dass wir auch mit weicher Röntgenstrahlung nichtlineare Effekte nutzen können. Wir brauchen dafür Photonenquellen, die schnell hintereinander kurze Lichtpulse liefern können. Dies gilt es bei der Entwicklung zukünftiger Photonenquellen zu berücksichtigen.“

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.