Sauerstoff: Sprunghaftes Verhalten

Dr. Justine Schlappa

Dr. Justine Schlappa

HZB an Forschungen zur Quantenschwebung beteiligt, die das Verständnis vom Entstehen und Brechen chemischer Bindungen erweitert.

Das Brechen der Bindung zwischen zwei Atomen ist ein elementarer Schritt in einer chemischen Reaktion. Dabei trennen sich die Atome bis sie keine Wechselwirkung mehr spüren. Kommt eins der Atome in die Nähe eines weiteren Atoms, kann es von diesem eingefangen werden, so dass eine neue chemische Bindung entsteht. Die bisherige Vorstellung von diesem Prozess: Die Bewegung der Atome verläuft stetig; beim Brechen einer Bindung vergrößert sich der Atomabstand kontinuierlich, beim Entstehen einer neuen Bindung verkleinert er sich ebenso kontinuierlich.

Ein internationales Team von Wissenschaftlerinnen und Wissenschaftlern hat unter Beteiligung von Professor Dr. Alexander Föhlisch und Dr. Justine Schlappa vom Institut „Methoden und Instrumentierung der Synchrotronstrahlung“ am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) gezeigt, dass diese Ansicht korrigiert werden muss: Brechen beispielsweise Sauerstoffmoleküle auseinander, bewegen sich die Atome nicht kontinuierlich auseinander.

Für diese Entdeckung beleuchteten die Wissenschaftler gasförmigen Sauerstoff mit so genanntem Synchrotronlicht. Das Licht führte zu einer Anregung der Sauerstoffmoleküle – die chemische Bindung zwischen den beiden Sauerstoffatomen des Moleküls bricht vorübergehend. Das von den Molekülen zurückgestreute Licht haben die Forscher gemessen und erhielten so Informationen über den Abstand der Sauerstoffatome zu einem bestimmten Zeitpunkt. Die Energie des eingestrahlten Lichts wählten die Experimentatoren so, dass der Zerfallsprozess auf zwei gleichwertige Arten ablaufen kann. Beide Wege unterscheiden sich nur darin, dass die sich trennenden Atome unterschiedliche Geschwindigkeiten aufweisen.

Die Messergebnisse zeigen, dass es für die tatsächlich gemessenen Abstände zwischen den Sauerstoffatomen nicht beliebige, sondern präferenzielle Werte gibt: Es gibt also Distanzen, wo sich die Sauerstoffatome häufig aufhalten. Zur Erklärung dieses Phänomens zieht die HZB-Wissenschaftlerin Dr. Justine Schlappa den Vergleich mit einer leicht verstimmten Gitarre heran: „Zupft ein Musiker auf den Saiten zwei Töne, deren Frequenzen etwas zueinander verschoben sind, hört er ein periodisches Lauter- und Leiserwerden. Akustiker nennen dieses An- und Abschwellen des Tones Schwebung. Sie verschwindet, wenn das Instrument sauber gestimmt ist und die Frequenzen der Töne exakt aufeinander abgestimmt sind.“

Ursache für die Schwebung ist der Wellencharakter des Schalls. „Wenn sich die Wellen zweier Töne leicht gegeneinander verschieben, kommt es zur Interferenz“, so Schlappa: „Gleichzeitig auftretende Wellenberge verstärken sich, und der Ton wirkt lauter. Treffen hingegen Wellentäler auf Wellenberge, löschen sie sich gegenseitig aus – der Ton wird leiser.“ Genauso wie den Schall betrachten die Physiker nun auch die sich trennenden Sauerstoffatome als Wellen. Justine Schlappa: „Die beiden möglichen Geschwindigkeiten, mit denen sich die Sauerstoffatome trennen, führen zu leicht verschobenen Frequenzen der Sauerstoff-Wellen und verursachen die so genannte Quantenschwebung.“ Auch hier verstärken sich Wellenberge und es kommt zu Stellen im Raum wo Atome vorzugsweise gefunden werden. Wellenberge und Wellentäler heben sich gegenseitig auf mit dem Resultat, dass es Orte gibt, an denen sich keine Atome aufhalten.

„Unsere Beobachtung hat gravierende Konsequenzen für das Verständnis chemischer Reaktionen“, sagt Professor Dr. Alexander Föhlisch, Leiter des HZB-Instituts „Methoden und Instrumentierung der Synchrotronstrahlung“: „Kann kein Atom nachgewiesen werden, können bei diesem Abstand keine weitere chemische Schritte stattfinden“, so Föhlisch weiter: „Dies ist eine gravierende Einschränkung für den Ablauf von chemischen Reaktionen und zwingt uns dazu, im Grundsatz unser Verständnis von chemischen Prozessen zu überdenken.“

A. Pietzsch et al., Spatial Quantum Beats in Vibrational Resonant Inelastic Soft X-ray Scattering at Dissociating States of Oxygen, Phas.; Rev. Lett. 153004 (2011). DOI: 10.1103/PhysRevLett.106.153004

Und:

Y-P Sun et al., Internal Symmetry and Selection Rules in Resonant Inelastic Soft X-ray Scattering", J. Phys. B: At. Mol. Opt. Phys. 44 161002 (2001).

HS


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.