Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode. 

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode.  © BAM

Forscher*innen der Bundesanstalt für Materialforschung und -prüfung (BAM) und der Freien Universität Berlin haben erstmals den genauen Mechanismus des Simons-Prozesses entschlüsselt. Das interdisziplinäre Forschungsteam nutzte dafür die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin.

Der Simons-Prozess ist von großer Bedeutung für die Herstellung fluororganischer Verbindungen und wird u.a. in der Pharmazie, Agrochemie, Kunststoffherstellung und Elektronik angewandt. Das Verfahren ist benannt nach seinem Entdecker, dem amerikanischen Chemiker Joseph H. Simons, und nutzt ein elektrochemisches Verfahren zur Synthese fluororganischer Verbindungen. Durch die Passage von Strom durch eine Elektrolytlösung mit Fluorwasserstoff an einer Anode und einer Kathode entstehen fluorhaltige Ionen, die mit anderen Ionen oder Molekülen in der Lösung reagieren, um die gewünschten fluorhaltigen Verbindungen zu bilden.

Obwohl dieses Verfahren seit über 70 Jahren angewendet wird, blieb der genaue Mechanismus des Simons-Prozesses bislang im Dunkeln. Bekannt war lediglich, dass sich während des Elektrolyseverfahrens auf der Nickel-Anode ein schwarzer Film bildet.

Um diesen Film genauer analysieren zu können, nutzte das interdisziplinäre Forschungsteam erstmals die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin. Mithilfe einer eigens entwickelten Messzelle war es möglich, In-situ-Messungen an der Anode durchzuführen, wodurch sogar einzelne Atome während der Elektrofluorierung beobachtet werden konnten. Die Untersuchungen enthüllten, dass im Verlauf des Simons-Prozesses Zentren hochvalenter Nickel-Ionen in der schwarzen Schicht entstehen, die entscheidend für den Erfolg der Elektrofluorierung sind.

Diese Entdeckung ermöglicht es, den Simons-Prozess gezielt zu verbessern und effizienter zu gestalten, was von großer Bedeutung für die chemische Industrie ist.

Quelle: Pressemitteilung der BAM

red/sz

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.