Diamantmaterialien als solarbetriebene Elektroden – Spektroskopie zeigt, worauf es ankommt

Hier sind vier Diamantmaterialien zu sehen: "Diamantschwarz" aus polykristallinem nanostrukturierten Kohlenstoff (oben rechts), das gleiche Material vor der Nanostrukturierung (oben links), ein Einkristall (unten links) und ein mit Bor dotierter Einkristall (unten rechts).

Hier sind vier Diamantmaterialien zu sehen: "Diamantschwarz" aus polykristallinem nanostrukturierten Kohlenstoff (oben rechts), das gleiche Material vor der Nanostrukturierung (oben links), ein Einkristall (unten links) und ein mit Bor dotierter Einkristall (unten rechts). © A. Chemin/HZB

Es klingt wie Magie: Photoelektroden, die das Treibhausgas CO₂ in Methanol umwandeln oder Stickstoffmoleküle in wertvollen Dünger – und zwar allein mit der Energie des Sonnenlichts. Dass Diamantmaterialien sich dafür eignen, zeigt nun eine Studie aus dem HZB. Durch die Kombination von Röntgen-Spektroskopieverfahren an BESSY II mit weiteren Messmethoden gelang es dem Team um Tristan Petit, erstmals genau zu verfolgen, welche Prozesse an der Oberfläche dieser Materialien durch Licht angeregt werden und worauf es dabei ankommt.

Im Labor produzierte Diamantmaterialien haben auf den ersten Blick wenig mit ihren Namensvettern aus dem Juwelierladen gemeinsam. Sie sind undurchsichtig, dunkel und sehen nach gar nichts Besonderem aus. Aber das täuscht, denn Diamantmaterialien besitzen sehr besondere Eigenschaften, die sie für eine breite Palette an Anwendungen interessant machen: zum Beispiel in Gehirnimplantaten, Quantensensoren und -computern, und als metallfreie Photoelektroden in einer Elektrolysezelle zur Umwandlung von Energie. Diamantmaterialien bestehen aus Kohlenstoff, können industriell und nachhaltig produziert werden, und altern kaum im Gegensatz zu metallbasierten Photoelektroden.

Diamantmaterialien kommen als metallfreie Photoelektroden in Frage, weil sie bei Anregung durch Licht Elektronen in Wasser freisetzen und so chemische Reaktionen ermöglichen, die sonst nur schwer in Gang zu setzen sind. Ein konkretes Beispiel ist die Reduktion von CO2 zu Methanol: Dabei entsteht aus dem Treibhausgas CO2 ein wertvoller Brennstoff. Ebenfalls spannend wäre es, mit Hilfe von Diamantmaterialien Stickstoff in Stickstoff-Dünger NH3 umzuwandeln, wofür dann deutlich weniger Energie als beim Haber-Bosch-Verfahren benötigt würde.

Allerdings oxidieren Diamantmaterialien in Wasser und oxidierte Oberflächen, so nahm man an, geben keine Elektronen mehr ins Wasser ab. Zudem liegen die Bandlücken von Diamant im UV-Bereich (bei 5,5 eV), so dass sichtbares Licht nicht ausreichen sollte, um Elektronen von der Oberfläche anzuregen. Entgegen dieser Erwartung wurde jedoch vor kurzem eine rätselhafte Emission von Elektronen bei der Anregung durch sichtbares Licht beobachtet. Eine Studie aus der Arbeitsgruppe von Dr. Tristan Petit am HZB bringt nun neue Erkenntnisse und gibt Anlass zu Optimismus.

Dr. Arsène Chemin, Postdoc im Team von Petit, untersuchte Proben von Diamantmaterialien, die am Fraunhofer-Institut für Angewandte Festkörperphysik in Freiburg hergestellt wurden. Die Proben waren daraufhin optimiert, die CO2-Reduktionsreaktion zu erleichtern: Um eine gute elektrische Leitfähigkeit zu gewährleisten, waren sie mit Bor dotiert, eine Nanostrukturierung sorgte für eine große Oberfläche, was die Emission von Ladungsträgern erhöht.

Chemin setzte vier röntgenspektroskopische Methoden bei BESSY II ein, um die Oberfläche der Probe und die Energie zu charakterisieren, die zur Anregung bestimmter elektronischer Oberflächenzustände erforderlich ist. Anschließend nutzte er die in einem Speziallabor am HZB gemessene Oberflächen-Photospannung, um zu bestimmen, welche dieser Zustände angeregt werden und wie sich die Ladungsträger in den Proben verschieben. Ergänzend dazu hat er die Photoemission von Elektronen an Proben in Luft oder in Flüssigkeit gemessen. Durch die Kombination dieser Ergebnisse konnte er erstmals ein umfassendes Bild der Prozesse zeichnen, die nach der Anregung durch Licht an den Oberflächen der Proben ablaufen.

„Überraschenderweise fanden wir fast keinen Unterschied in der Photoemission von Ladungen in Flüssigkeit, unabhängig davon, ob die Proben oxidiert waren oder nicht“, sagt Chemin. Dies zeigt, dass Diamantmaterialien gut für den Einsatz in wässrigen Lösungen geeignet sind. Auch die Anregung mit sichtbarem Licht ist möglich: Im Falle der mit Bor dotierten Proben reicht violettes Licht (3,5 eV) aus, um die Elektronen anzuregen.

„Diese Ergebnisse stimmen uns sehr optimistisch“, sagt Chemin: „Mit den Diamantmaterialien haben wir eine neue Materialklasse, die weiter erforscht und breit eingesetzt werden kann.“ Darüber hinaus ist auch die Methodik dieser Studie interessant: Die Kombination dieser verschiedenen röntgenspektroskopischen Methoden könnte auch bei anderen photoaktiven Halbleitermaterialien zu neuen Durchbrüchen führen, hofft der Physiker.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.