20 Jahre Russisch-Deutsches Gemeinschaftslabor an BESSY II

Zum 20. Jubiläum veranstaltet das Russisch-Deutsche Labor am Speicherring BESSY II für Synchrotronstrahlung in Berlin am 18. und 19. November einen Online-Workshop. Dabei diskutieren Wissenschaftlerinnen und Wissenschaftler über die Zukunftsperspektiven der russisch-deutschen Zusammenarbeit sowie über innovative Projekte und neue Ziele des Labors.

Im Russisch-Deutschen Gemeinschaftslabor haben seit seiner Gründung vor zwei Dekaden zahlreiche Wissenschaftlerinnen und Wissenschaftler aus Russland und Deutschland gearbeitet und seither rund 770 Publikationen veröffentlicht. Die Forschungseinrichtung wird mittlerweile von acht Partnerorganisationen unterstützt – von der Freien Universität Berlin, dem Helmholtz-Zentrum Berlin, der Technischen Universität Dresden und der Technischen Universität Bergakademie Freiberg. Hinzu kommen die Staatliche Universität St. Petersburg, das Ioffe Institut in St. Petersburg sowie das Kurchatov-Institut und das Shubnikov-Institut für Kristallographie in Moskau. Förderung erhält das Labor durch das Bundesministerium für Bildung und Forschung. Messreisen unterstützt das Helmholtz-Zentrum Berlin und das Deutsch-Russische Exzellenz-Zentrum G-RISC, das durch den Deutschen Akademischen Austausch-Dienst (DAAD) mit Mitteln des Auswärtigen Amtes finanziert wird.

Die Wissenschaftlerinnen und Wissenschaftler nutzen den Jubiläumsworkshop, um über aktuelle Highlights aus ihrer Forschung zu diskutieren. So wird es in den Fachvorträgen um den Magnetismus zweidimensionaler Kristalle gehen, also um neuartige Materialien, die die Computerhardware der Zukunft leistungsfähiger und energieeffizienter machen können, sowie um neue Batteriematerialien und die Frage, warum neuartige Materialien für Solarzellen eine unerwartet hohe Effizienz zeigen. „Wie sieht die Zukunft des Russisch-Deutschen Labors aus?“, fragt Eckart Rühl, Professor für Physikalische Chemie an der Freien Universität Berlin und Koordinator des Forschungslabors. Neue Synchrotronstrahlungsquellen seien bereits in Deutschland und Russland in Planung. „BESSY II wird auch in der kommenden Dekade dem Russisch-Deutschen Labor ausgezeichnete Möglichkeiten bieten. Und die geplante Nachfolgerquelle BESSY III wird bisher nicht durchführbare Experimente möglich machen!“, betont Prof. Dr. Jan Lüning, wissenschaftlicher Direktor des Helmholtz-Zentrums Berlin.

Programm des Workshops am 18. und 19. November 2021

Lesen Sie die vollständige Mitteilung hier auf den Webseiten der Freien Universität Berlin

FU Berlin/red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Georg-Forster-Forschungsstipendiat untersucht Photokatalysatoren
    Nachricht
    17.03.2025
    Georg-Forster-Forschungsstipendiat untersucht Photokatalysatoren
    Dr. Moses Alfred Oladele arbeitet in einem gemeinsamen Projekt mit der Gruppe von Dr. Matt Mayer, HZB, und Prof. Andreas Taubert, Universität Potsdam, an innovativen Photokatalysatoren zur Umwandlung von CO2 mit Licht. Der Chemiker von der Redeemer‘s University in Nigeria, kam mit einem Georg-Forster-Forschungsstipendium der Alexander von Humboldt-Stiftung nach Berlin und wird zwei Jahre am HZB forschen.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.