Einblick in das HZB: Virtuelle Rundgänge und 360 ° Panoramen

Wir bieten nun auch virtuelle Touren an.

Wir bieten nun auch virtuelle Touren an. © HZB

Von vielen HZB-Laboren gibt es jetzt ein 360° Panorama.

Von vielen HZB-Laboren gibt es jetzt ein 360° Panorama. © HZB

Corona-bedingt können wir leider keine Besuchergruppen am HZB empfangen und durch unser Zentrum führen. Wir möchten trotz Corona für Sie erlebbar bleiben und Ihnen Einblicke ins HZB ermöglichen. Machen Sie es sich gemütlich und starten Sie Ihren eigenen virtuellen Rundgang durch unsere Welt der Forschung. Bewegen Sie sich durch 360-Grad-Bilder, schauen Sie sich in Ruhe um und verweilen Sie an ausgewählten Stationen.

Touren durch BESSY II:

Wollten Sie immer schon mal durch einen Beschleuniger gehen? Dann geht’s los! Die beiden Touren „Der Weg des Lichts“ und „Das Experiment“ starten im Kontrollraum von BESSY II. Weiter geht es zum Ort, wo die Elektronen mit beinahe Lichtgeschwindigkeit durchrasen und Licht aussenden – dem Speicherringtunnel. Folgen Sie dem Licht und sehen Sie, wie wir damit experimentieren.

Viel Spaß beim digitalen Rundgang durch BESSY II  !

Labore am Campus Wannsee:

Am HZB-Standort Wannsee untersuchen wir zum Beispiel neuartige Katalysatormaterialien, die für die Erzeugung von Wasserstoff mit Sonnenlicht oder die elektrochemische Umwandlung von Kohlendioxid in Kraftstoffe benötigt werden. Wir arbeiten an besseren Batteriesystemen und analysieren Materialien mit unterschiedlichen Röntgenmethoden. In Zusammenarbeit mit der Berliner Charité bieten wir die Augentumortherapie mit Protonen an, die an einem Teilchenbeschleuniger stattfindet. Schauen Sie sich in unseren Laboren um und entdecken Sie, wie wir forschen. Ein blaues Schild in den 360°-Panoramen weist auf Videoclips oder Grafiken hin, die wichtige Prozesse zeigen.

Viel Spaß bei den digitalen Rundgängen durch die Labore am Standort Wannsee.

Labore in 360°-Ansichten

Einige Forschungsstätten des HZB können als 360-Grad-Panoramen besichtigt werden. Diese Panoramen enthalten keine Erklärungen und stehen vor allem unseren Forscher*innen und Kooperationspartnern für Führungen oder Vorträge zur Verfügung.

red.


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.