Einblick in das HZB: Virtuelle Rundgänge und 360 ° Panoramen

Wir bieten nun auch virtuelle Touren an.

Wir bieten nun auch virtuelle Touren an. © HZB

Von vielen HZB-Laboren gibt es jetzt ein 360° Panorama.

Von vielen HZB-Laboren gibt es jetzt ein 360° Panorama. © HZB

Corona-bedingt können wir leider keine Besuchergruppen am HZB empfangen und durch unser Zentrum führen. Wir möchten trotz Corona für Sie erlebbar bleiben und Ihnen Einblicke ins HZB ermöglichen. Machen Sie es sich gemütlich und starten Sie Ihren eigenen virtuellen Rundgang durch unsere Welt der Forschung. Bewegen Sie sich durch 360-Grad-Bilder, schauen Sie sich in Ruhe um und verweilen Sie an ausgewählten Stationen.

Touren durch BESSY II:

Wollten Sie immer schon mal durch einen Beschleuniger gehen? Dann geht’s los! Die beiden Touren „Der Weg des Lichts“ und „Das Experiment“ starten im Kontrollraum von BESSY II. Weiter geht es zum Ort, wo die Elektronen mit beinahe Lichtgeschwindigkeit durchrasen und Licht aussenden – dem Speicherringtunnel. Folgen Sie dem Licht und sehen Sie, wie wir damit experimentieren.

Viel Spaß beim digitalen Rundgang durch BESSY II  !

Labore am Campus Wannsee:

Am HZB-Standort Wannsee untersuchen wir zum Beispiel neuartige Katalysatormaterialien, die für die Erzeugung von Wasserstoff mit Sonnenlicht oder die elektrochemische Umwandlung von Kohlendioxid in Kraftstoffe benötigt werden. Wir arbeiten an besseren Batteriesystemen und analysieren Materialien mit unterschiedlichen Röntgenmethoden. In Zusammenarbeit mit der Berliner Charité bieten wir die Augentumortherapie mit Protonen an, die an einem Teilchenbeschleuniger stattfindet. Schauen Sie sich in unseren Laboren um und entdecken Sie, wie wir forschen. Ein blaues Schild in den 360°-Panoramen weist auf Videoclips oder Grafiken hin, die wichtige Prozesse zeigen.

Viel Spaß bei den digitalen Rundgängen durch die Labore am Standort Wannsee.

Labore in 360°-Ansichten

Einige Forschungsstätten des HZB können als 360-Grad-Panoramen besichtigt werden. Diese Panoramen enthalten keine Erklärungen und stehen vor allem unseren Forscher*innen und Kooperationspartnern für Führungen oder Vorträge zur Verfügung.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.