Solarenergie: Cäsium-basierte anorganische Halogenid-Perowskite kartiert

Neun Proben mit unterschiedlicher Zusammensetzung: von reinem CsPbBr<sub>2</sub>I (Tinte 1, links) bis zu reinem CsPbI<sub>3</sub> (Tinte 2 rechts).

Neun Proben mit unterschiedlicher Zusammensetzung: von reinem CsPbBr2I (Tinte 1, links) bis zu reinem CsPbI3 (Tinte 2 rechts). © H. Näsström/HZB

Alle Proben werden im HySPRINT-Labor am HZB hergestellt.

Alle Proben werden im HySPRINT-Labor am HZB hergestellt. © H. Näsström/HZB

Forscherinnen und Forscher am HZB haben verschiedene Zusammensetzungen von Cäsium-basierten Halogenidperowskiten (CsPb(BrxI1-x)3 (0 ≤ x ≤ 1)) gedruckt und untersucht. In einem Temperaturbereich zwischen Raumtemperatur und 300 Celsius beobachten sie strukturelle Phasenübergänge, die die elektronischen Eigenschaften beeinflussen. Die Studie bietet eine schnelle und einfache Methode zur Bewertung neuer Zusammensetzungen von Perowskitmaterialien, um Kandidaten für Anwendungen in Dünnschichtsolarzellen und optoelektronischen Bauelementen zu identifizieren.

Hybridhalogenidperowskite (ABX3) haben sich in nur wenigen Jahren als hocheffiziente neue Materialien für Dünnschichtsolarzellen durchgesetzt. Das A steht für ein Kation, entweder ein organisches Molekül oder ein Alkalimetall, das B ist ein Metall, meistens Blei (Pb), und das X ist ein Element aus der Gruppe der Halogene wie Brom oder Iod. Derzeit erreichen einige Perowskit-Verbindungen Wirkungsgrade über 25 %. Darüber hinaus können die meisten Perowskit-Dünnschichten bei moderaten Temperaturen aus einer Lösung hergestellt werden, was sehr wirtschaftlich ist.

Anorganische Perowskit-Halbleiter

Weltrekordwirkungsgrade wurden von organischen Molekülen wie Methylammonium (MA) als A-Kation mit Blei und Jod oder Bromid an den anderen Standorten erreicht. Aber diese organischen Perowskite sind noch nicht sehr stabil. Anorganische Perowskite mit Cäsium am A-Standort versprechen höhere Stabilitäten: Allerdings sind einfache Verbindungen wie CsPbI3 oder CsPbBr3 entweder auch nicht sehr stabil oder bieten nicht die elektronischen Eigenschaften, die für Anwendungen in Solarzellen oder anderen optoelektronischen Geräten benötigt werden.

Systematische Variationen der Zusammensetzung

Nun hat ein Team am HZB Zusammensetzungen von CsPb(BrxI1-x)3 untersucht, die optische Bandlücken zwischen 1,73 und 2,37 eV bieten. Das macht diese Mischungen interessant für Anwendungen als Tandem-Bauelemente.

Tintenstrahldruckverfahren

Für die Herstellung verwendeten die Forscherinnen und Forscher ein neu entwickeltes Verfahren zum Drucken kombinatorischer Perowskit-Dünnschichten, um systematische Variationen von CsPb(BrxI1-x)3-Dünnschichten auf einem Substrat zu erzeugen. Dazu wurden zwei Druckköpfe entweder mit CsPbBr2I oder CsPbI3 gefüllt, und der Drucker programmiert, um aus jedem Druckkopf eine jeweils exakt bemessene Anzahl von Flüssigkeitströpfchen auf das Substrat zu drucken. Dadurch entstanden dünne Schichten der Proben mit der gewünschten Zusammensetzung, die im Anschluss noch weiteren Behandlungen unterzogen wurde.

Untersuchungen im LIMAX-Labor am HZB

Mit einer speziellen Hochintensitäts-Röntgenquelle, dem Liquid-Metaljet im LIMAX-Labor des HZB, wurde die kristalline Struktur der Perowskit-Dünnschichten bei verschiedenen Temperaturen von Raumtemperatur bis zu 300 Celsius analysiert. "Wir fanden, dass sich alle Zusammensetzungen bei hoher Temperatur in eine kubische Perowskit-Phase umwandeln", erklärt Hampus Näsström, Doktorand und Erstautor der Publikation. Erst beim Abkühlen gehen alle Proben in metastabile tetragonal und orthorhombisch verzerrte Perowskitphasen über, die sie für photovoltaische Anwendungen geeignet machen. "Dies hat sich als idealer Anwendungsfall der in-situ-Röntgenstrukturanalyse mit der laborgestützten hochbrillanten Röntgenquelle erwiesen", fügt Dr. Roland Mainz, Leiter des LIMAX-Labors, hinzu.

Absenkung der Prozeßtemperatur möglich

Da sich herausgestellt hat, dass die Übergangstemperaturen in die gewünschten Phasen mit steigendem Bromgehalt abnehmen, wäre es möglich, die Verarbeitungstemperaturen für anorganische Perowskit-Solarzellen weiter zu senken.

Systematisch Variationen testen

"Das Interesse an dieser neuen Klasse von Solarmaterialien ist enorm, und die möglichen Variationen in der Zusammensetzung sind nahezu unendlich. Diese Arbeit zeigt, wie ein breites Spektrum von Variationen systematisch hergestellt und bewertet werden kann", sagt Dr. Eva Unger, die die Nachwuchsgruppe Hybridmaterialbildung und Skalierung leitet. Dr. Thomas Unold, Leiter der Gruppe Kombinatorische Energie-Materialforschung, stimmt dem zu: „Dies ist ein Paradebeispiel dafür, wie Hochdurchsatzansätze in der Forschung die Entdeckung und Optimierung von Materialien in der zukünftigen Forschung enorm beschleunigen könnten".

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.