Röntgenanalyse von Kohlenstoff-Nanostrukturen hilft beim Materialdesign

Skizze einer Kohlenstoffstruktur mit Poren.

Skizze einer Kohlenstoffstruktur mit Poren. © HZB

Je höher die Reaktionstemperatur bei der Herstellung der Kohlenstoffstrukturen ist, desto geordneter fallen diese Strukturen aus. Dies zeigen sowohl die TEM-Aufnahmen als auch die SAXS-Daten.

Je höher die Reaktionstemperatur bei der Herstellung der Kohlenstoffstrukturen ist, desto geordneter fallen diese Strukturen aus. Dies zeigen sowohl die TEM-Aufnahmen als auch die SAXS-Daten. © HZB

Nanostrukturen aus Kohlenstoff sind äußerst vielseitig: Sie können in Batterien und Superkondensatoren Ionen aufnehmen, Gase speichern oder Wasser entsalzen. Wie gut sie diese Aufgaben meistern, hängt von Größe und Form der Nanoporen ab. Über die Temperatur während der Synthese lassen sich die Nanoporen dabei stark verändern.  Bisher war es nur möglich, Form, Größe sowie die Verteilung der Nanoporen ungefähr abzuschätzen. Eine neue Studie zeigt nun, dass sich solche Informationen direkt und zuverlässig mit Hilfe der Kleinwinkel-Röntgenstreuung gewinnen lassen. Die Ergebnisse wurden in der Zeitschrift Carbon veröffentlicht.

Nanoporöse Kohlenstoffe können sehr unterschiedliche Aufgaben erfüllen: ob für den schnellen Ionen- oder Elektronentransport, als Speichermedien für elektrische Ladung in Batterien oder Superkondensatoren, für Gase oder zur Entsalzung von Wasser. Um solche Materialien für ihre jeweilige Aufgabe zu optimieren, ist es vorteilhaft, wenn sich Größe, Form und Verteilung der Poren gezielt beeinflussen lassen. Ein Team am HZB-Institut für Weiche Materie und Funktionsmaterialien hat nun mit einer Gruppe an der Universität Tartu, Estland, untersucht, wie sich direkt und zuverlässig Informationen über die Strukturen und Poren in nanoporösen Kohlenstoffen gewinnen lassen.

Kohlenstoffproben bei 600 bis 1000 Grad Celsius

Die Kohlenstoffproben wurden an der Universität Tartu, Estland, bei unterschiedlich hohen Temperaturen (600, 700, 800, 900 und 1000 Grad Celsius) durch Reaktion von Molybdäncarbid mit Chlor hergestellt. Die so entstandenen nanoporösen Materialien aus reinem Kohlenstoff besitzen unterschiedliche Porosität, elektronische und ionische Leitfähigkeit, Hydrophilie und elektrokatalytische Aktivität.

Auf die innere Oberfläche kommt es an

Die Oberflächenstrukturen wurden mit einem Transmissionselektronenmikroskop am HZB untersucht. Aber solche Bilder zeigen nur die Oberfläche. Die innere Oberfläche von Nanokohlenstoffen wird üblicherweise durch Adsorption von Gasen untersucht. Diese Methode ist jedoch nicht nur vergleichsweise ungenau, sie enthält auch keine Informationen über Form, Größe und Verteilung der Poren.

Kleinwinkel-Röntgenstreuung bringt Aufschluss

Daher nutzten Dr. Eneli Härk und ihre Kollegen am HZB die Methode der Kleinwinkel-Röntgenstreuung (SAXS). Die Kleinwinkel-Röntgenstreuung liefert nicht nur Informationen über die innere Oberfläche und durchschnittliche Porengröße, sondern auch darüber, ob Poren eher schlitzförmig oder rund sind, was bei der Funktionalisierung der Materialien ebenfalls eine große Rolle spielt. „Die SAXS-Analyse fasst eine enorme Menge von Mikroporen statistisch zusammen“, erklärt Härk. „Und zwar ohne, dass wir vorab irgendwelche Modelle oder Annahmen machen müssen“.

Gezielte Materialsynthese

Ziel der Studie war es, besser zu verstehen, wie Strukturbildung und die elektrochemischen Eigenschaften von Kohlenstoff miteinander zusammenhängen und wie sie sich durch die Temperatur bei der Synthese beeinflussen lassen. "Für eine optimale Funktion ist nicht nur eine hohe innere Oberfläche entscheidend, sondern die Poren sollten auch genau die richtige Form, Größe und Verteilung haben", so Härk.

Die Studie wurde in "Carbon" (2019) publiziert:

Carbide Derived Carbons Investigated by Small Angle X-ray Scattering: Inner Surface and Porosity vs. Graphitization; Eneli Härk, Albrecht Petzold, Günter Goerigk, Sebastian Risse, Indrek Tallo, Riinu Härmas, Enn Lust and Matthias Ballauff.

DOI: 10.1016/j.carbon.2019.01.076

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.