Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Die Rastertunnelmikroskopie zeigt: Graphen wölbt sich über den Goldclustern und bildet ein regelmäßiges Muster, das an das Polster eines Chsterfield-Sofas erinnert.

Die Rastertunnelmikroskopie zeigt: Graphen wölbt sich über den Goldclustern und bildet ein regelmäßiges Muster, das an das Polster eines Chsterfield-Sofas erinnert. © HZB

Typisches Chesterfield-Polster. (

Typisches Chesterfield-Polster. ( © mit freundlicher Genehmigung von Petr Kratochvil

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen, wie eine Bienenwabe. Graphen ist strikt zweidimensional, also unendlich dünn, extrem leitfähig, perfekt lichtdurchlässig und sehr stark belastbar. Das „Wundermaterial“ besitzt außerdem weitere interessante Eigenschaften, die mit seinem Aufbau zusammenhängen.

So können die Spins (winzige magnetische Momente) der Leitungselektronen überraschenderweise sehr gut kontrolliert werden. Denn bringt man eine Lage Graphen auf ein Nickelsubstrat auf und schiebt Goldatome dazwischen, dann erhöht sich die so genannte „Spin-Bahn-Wechselwirkung“ dramatisch um den Faktor 10.000, sodass sich die Ausrichtung der Spins durch äußere Felder beeinflussen lässt.

Dass dies funktioniert hatten die Physiker um Dr. Andrei Varykhalov am HZB bereits mehrfach demonstriert. Allerdings war nicht klar, warum die Präsenz der Goldatome sich derartig stark auf das Verhalten der Spinaufspaltung im Graphen auswirkt.

„Wir wollten daher herausfinden, wie es dazu kommt, dass die hohe Spin-Bahn-Wechselwirkung, die für Gold charakteristisch ist, sich auf das Graphen überträgt“, sagt Varykhalov. In der jetzt veröffentlichten Arbeit zeigen die Physiker, dass sich die Goldatome in der Zwischenschicht nicht ganz gleichmäßig, sondern in kleinen Grüppchen oder Clustern auf dem Nickel-Substrat verteilen. Diese Gold-Cluster bilden wiederum ein regelmäßiges Muster unter dem Graphen. Dazwischen bleiben Nickelatome frei. Das Graphen bindet stark zum Nickel und wölbt sich so deutlich über den Gold-Clustern. „Es sieht fast so aus wie ein Polster eines Chesterfield-Sofas”, erklärt Varykhalov. „An den Punkten, an denen Gold und Kohlenstoff in enge Berührung kommen, entsteht die extrem hohe Spin-Bahn-Wechselwirkung, die wir beobachten. Dieses Ergebnis wird durch Rastertunnelmikroskopie und Dichtefunktionsanalysen gestützt“.

Zur Publikation:

2D Materials, Vol.4, Nr3 (2017): "Nanostructural origin of giant Rashba effect in intercalated graphene". M Krivenkov, E Golias, D Marchenko, J Sánchez-Barriga, G Bihlmayer, O Rader and A Varykhalov. 

Doi: 10.1088/2053-1583/aa7ad8

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Science Highlight
    21.02.2025
    Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.