Magnetische Speicher mit Licht schalten – Neue Erkenntnisse zu grundlegenden Mechanismen

Schematischer Aufbau des Experiments.</p>
<p>

Schematischer Aufbau des Experiments.

© HZB

© HZB

Ein Forscherteam hat am Helmholtz-Zentrum (HZB) zum ersten Mal gezeigt, wie das Schalten von magnetischen Materialeigenschaften per Laserlicht durch Wärmeeffekte beeinflusst wird und unter welchen Bedingungen der Schaltprozess abläuft. Zugleich entdeckten die Wissenschaftler eine bislang unbekannte Abhängigkeit von der Dicke der magnetischen Schicht: ein wichtiger Hinweis für das theoretische Verständnis von optisch steuerbaren Magnet-Datenspeichern. Die Arbeit wird heute in der Fachzeitschrift Scientific Reports publiziert.

Die Anforderungen an digitale Speichermedien wachsen ständig. Eine rasant zunehmende Menge an Daten und neue technische Anwendungen verlangen nach Speichern, die viele Informationen auf sehr kleinem Raum bunkern können und sich zuverlässig mit hoher Zugriffsgeschwindigkeit nutzen lassen. Besonders aussichtsreich erscheinen magnetische Datenspeicher, die mit Laserlicht beschrieben werden. An dieser neuen Technologie arbeiten Forscher seit einigen Jahren. „Bislang sind jedoch noch etliche Fragen zu den grundlegenden Mechanismen und zur genauen Funktionsweise optisch steuerbarer Magnetspeicher offen“, sagt Dr. Florian Kronast, stellvertretender Leiter der Abteilung Materialien für grüne Spintronik am Helmholtz-Zentrums Berlin (HZB).  

Einem Forscherteam unter seiner Leitung ist nun ein wichtiger Schritt hin zu einem besseren Verständnis der vielversprechenden Speichertechnologie gelungen. Die Wissenschaftler konnten erstmals experimentell belegen, dass die Erwärmung des Speichermaterials durch die Energie des Laserlichts eine entscheidende Rolle beim Schalten der Magnetisierung spielt und dass die Veränderung im Material nur unter bestimmten Bedingungen erfolgt.

Präzise Messungen in winzigem Laser-Lichtfleck

Die Wissenschaftler des HZB sowie der Freien Universität Berlin und der Universität Regensburg untersuchten die mikroskopischen Vorgänge hochaufgelöst beim Bestrahlen einer dünnen Schicht aus magnetischem Material mit zirkular polarisiertem Laserlicht. Dazu richteten sie das Licht eines Infrarotlasers auf eine nanometerdünne Schicht der Legierung TbFe aus den Metallen Terbium und Eisen. Die experimentelle Besonderheit: Der eng fokussierte Lichtfleck des Lasers hatte einen Durchmesser von nur drei Mikrometern. „Das ist weit weniger als bei bisherigen Experimenten üblich war“, sagt HZB-Wissenschaftlerin Ashima Arora, die Erstautorin der Studie. Und es ermöglichte den Forschern eine bislang einzigartige Detailschärfe bei der Untersuchung der Phänomene. Die Abbildungen der magnetischen Domänen in der Legierung, die das Team mithilfe von Röntgenlicht aus der Synchrotron-Strahlungsquelle BESSY II erstellte, offenbarte Feinheiten selbst von 30 Nanometer Größe.

Das Entscheidende geschieht im Ring

Die Resultate der Messungen zeigen: Um den schmalen Laserfleck herum bildet sich ein ringförmiger Bereich, der zwei magnetisch unterschiedliche Regionen voneinander trennt. Innerhalb des Rings ist das zuvor vorhandene Muster der Magnetisierung durch die Erwärmung vollständig ausgelöscht. In der Zone außerhalb bleibt es dagegen in der ursprünglichen Form erhalten. In dem schmalen Ring dazwischen stellt sich eine Temperaturverteilung ein, die eine Änderung der Magnetisierung durch Verschieben der Domänenränder ermöglicht. „Nur dort spielt sich das Schalten der Magneteigenschaften ab, bei einem Speicher also das Ablegen der Daten“, erklärt Arora.

Überraschender Einfluss der Schichtdicke

„Diese neuen Erkenntnisse werden helfen, optisch gesteuerte Magnetspeicher mit den bestmöglichen Eigenschaften zu entwickeln“, meint Florian Kronast. Zu einem besseren Verständnis der dafür wichtigen physikalischen Prozesse trägt ein weiterer Effekt bei, den die Forscher am HZB erstmals und überraschend beobachtet haben: Die Art, wie das Schalten der Magnetisierungen geschieht, hängt empfindlich von der Dicke der mit Laserlicht bestrahlten Materialschicht ab. Sie ändert sich bei einem Wert der Schichtdicke zwischen 10 und 20 Nanometern.

„Das ist ein deutliches Indiz, dass zwei unterschiedliche Mechanismen eine Rolle spielen und miteinander konkurrieren“, erklärt Kronast. Er und sein Team haben dafür zwei komplexe physikalische Effekte im Verdacht. Um ihn zu bestätigen, sind aber weitere experimentelle und theoretische Untersuchungen nötig.

Die Arbeit wurde in Scientific Reports (DOI 10.1038/s41598-017-09615-1) publiziert: „Spatially resolved investigation of all optical magnetization switching in TbFe alloys“. Ashima Arora, Mohammad-Assaad Mawass, Oliver Sandig, Chen Luo, Ahmet A. Ünal, Florian Radu, Dergio Valencia, Florian Kronast.

Ralf Butscher / HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Science Highlight
    21.02.2025
    Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.