Meilenstein für die Energieforschung am Campus Wannsee

Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. Roel van de Krol, Dirk Mielke, Dr. Catherine Dubourdieu und Monica Wurfbaum (v.l.n.r.). Foto: HZB/J. Bierbaum

Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. Roel van de Krol, Dirk Mielke, Dr. Catherine Dubourdieu und Monica Wurfbaum (v.l.n.r.). Foto: HZB/J. Bierbaum

Am 23. März 2017 wurde die Grundsteinlegung für ein Laborgebäude gefeiert, das vielfältige Methoden für die Synthese und Charakterisierung von Energiematerialien bieten wird.

Seit Anfang des Jahres wird gebaut: In Wannsee entsteht derzeit ein neues Gebäude für die Energieforschung im Rahmen der Helmholtz Energy Materials Foundry (HEMF). Schon im Dezember 2017 soll es fertig werden. Zahlreiche Mitarbeitende und Baupartner feierten zusammen mit den wissenschaftlichen Projektleitenden und der Geschäftsführung die Grundsteinlegung für den flexibel nutzbaren Laborkomplex. In dem zweistöckigen Gebäude werden jeweils 135 Quadratmeter große Flächen für die physikalische Chemie zur Verfügung stehen. In das Erdgeschoss wird das Institut Funktionale Oxide für energieeffiziente Informationstechnologien (EM-IFOX) einziehen.

Prof. Dr. Anke Kaysser-Pyzalla betonte: „Der Neubau des Laborgebäudes ist ein wichtiges Zukunftsprojekt für den Campus Wannsee und ergänzt die vorhandenen Forschungsmöglichkeiten in der Energie-Material-Forschung perfekt. Damit verbreitern wir insbesondere unser Portfolio in der Materialsynthese. Das ist eine entscheidende Voraussetzung, um gezielt Energiematerialien mit interessanten Funktionen und Eigenschaften zu entwickeln.“ 

In dem Labor sollen Materialien und Anwendungen für die energieeffiziente IT sowie Materialien für die Umwandlung von Kohlenstoffdioxid in wertvolle Kohlenwasserstoffe entwickelt werden. „Diese Themen sind nicht nur sehr spannende und herausfordernde Forschungsfelder. Sie gehören zu den Schlüsselfragen, die für den Umstieg auf eine effiziente und klimafreundliche Energieversorgung der Zukunft gelöst werden müssen“, erläuterte der HZB-Projektleiter für die Helmholtz Energy Materials Foundry, Prof. Dr. Roel van de Krol.

Dr. Catherine Dubourdieu, Leiterin des Instituts EM-IFOX, wird in dem Labor mit ihrem Team Metalloxide erforschen. Diese Materialien weisen ein außerordentlich breites Spektrum elektrischer, magnetischer, optischer und mechanischer Eigenschaften auf. „Dies bietet ein riesiges Potenzial für die Entwicklung neuer Bauelemente, die extrem effizient sind und besondere Funktionen besitzen. Unser Ziel ist es, diese funktionalen Oxide so weiterzuentwickeln, dass sie einen großen Anwendungsbereich abdecken. Sie sollen so vielfältig einsetzbar werden wie die heute weit verbreiteten Halbleiter-Heterostrukturen“, sagt Dr. Catherine Dubourdieu. Was sie genau vorhat und welche Synthese- und Charakterisierungsmöglichkeiten im Labor geplant sind, erläutert sie hier.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Science Highlight
    21.02.2025
    Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.