Starre Ordnung konkurriert mit Supraleitung

Streifenanordnung von Ladungstr&auml;gern in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+x</sub> [2]. Die Abbildung zeigt die Struktur mit einer Periode von etwa einem Nanometer (vorn) und das zugeh&ouml;rige Beugungsbild (hinten) in Form einer sogenannten Fouriertransformation (Yazdani Lab, Princeton University).

Streifenanordnung von Ladungsträgern in Bi2Sr2CaCu2O8+x [2]. Die Abbildung zeigt die Struktur mit einer Periode von etwa einem Nanometer (vorn) und das zugehörige Beugungsbild (hinten) in Form einer sogenannten Fouriertransformation (Yazdani Lab, Princeton University).

Heute in Science Express: In Hochtemperatursupraleitern wie den Cupraten können die Ladungsträger sich zu winzigen „Nanostreifen“ anordnen, was die Supraleitung unterdrückt, zeigten Gastforscher aus Princeton und Vancouver an BESSY II

Supraleiter sind Materialien, die elektrischen Strom ohne Energieverlust leiten. Klassische Supraleiter müssen dafür jedoch bis fast zum absoluten Nullpunkt (minus 273 Grad Celsius) heruntergekühlt werden, und selbst die „Hochtemperatur-Supraleiter“ benötigen noch sehr tiefe Temperaturen von minus 200 Grad Celsius. Obwohl diese Kühlung aufwändig ist, werden Supraleiter bereits in vielen Bereichen eingesetzt, beispielsweise in der Medizin für die Magnetresonanztomographie. Materialien, die auch bei Raumtemperatur Strom verlustfrei leiten, gibt es trotz großer Anstrengungen noch immer nicht.

Hochtemperatursupraleiter sind seit 1986 bekannt, nur ein Jahr später erhielten ihre Entdecker den Nobelpreis. Hochtemperatursupraleitung findet man in der Materialklasse der Cuprate, komplexen Verbindungen aus Kupfer und Sauerstoff sowie weiteren Elementen. Doch trotz intensiver Forschung sind entscheidende Prozesse noch immer nicht verstanden. Denn in diesen Materialien hängen die Eigenschaften der Ladungsträger von vielen subtilen Details ab, und es gibt eine Reihe von Mechanismen, die sie daran hindern, den supraleitenden Zustand einzunehmen. So konkurrieren offenbar auch andere Materialzustände mit der Supraleitung.

Einer dieser Zustände ist die regelmäßige Anordnung der Ladungsträger in streifenförmigen Strukturen auf der Nanoskala. Diese Anordnung macht die Ladungsträger unbeweglich und unterdrückt so die Supraleitung. Bereits im vorigen Jahr konnten Gastforscher mit Hilfe von Experimenten an BESSY II zeigen, dass dieser Mechanismus in einer relevanten Gruppe von Cupraten auftritt und die Supraleitung verhindert [1]. Unter der Führung von zwei Forschergruppen aus Vancouver und Princeton haben internationale Teams diese sogenannte Ladungsordnung nun auch in weiteren Cupraten gefunden und als eine grundlegende Eigenschaft dieser Materialien identifiziert.

Sie nutzten dafür das am HZB entwickelte XUV-Diffraktometer an der UE46_PGM1-Beamline an BESSY II. Mit Synchrotronstrahlung im weichen Röntgenbereich gelang es ihnen, diese schwer nachweisbaren Nanostrukturen in der Ladungsanordnung mit hoher Präzision zu messen und damit wesentlich zum Verständnis dieses Phänomens beizutragen. Dabei arbeiteten sie eng mit Wissenschaftlern der Abteilung Quantenphänomene in neuen Materialien (vormals am Institut Komplexe Magnetische Materialien) am HZB zusammen. Die Ergebnisse wurden jetzt in zwei Artikeln im Fachjournal Science publiziert [2,3]. „Mit der Identifizierung und dem Verständnis der Konkurrenzprozesse zur Supraleitung verbindet sich die Hoffnung, die konkurrierenden Wechselwirkungen gezielt ausschalten zu können und auf diese Weise Supraleitung bei Raumtemperatur zu ermöglichen“, erklärt Dr. Eugen Weschke, der die Messungen an BESSY II betreut hat.


[1] G. Ghiringelli et al., Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x, Science 337, 821 (2012).
[2] Eduardo H. da Silva Neto et al., Ubiquitous Interplay between Charge Ordering and High-Temperature Superconductivity in Cuprates, Science 2013. DOI: 10.1126/science.1243479


[3] R. Comin et al., Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ, Science (2013). DOI: 10.1126/science.1242996

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.