Magnetischer Fingerabdruck von Grenzflächendefekten im Photostrom von Siliziumsolarzellen gefunden

© HZB / Uni Paderborn

HZB-Physiker haben mit einer hochempfindlichen Messmethode an Heterokontakt-Siliziumsolarzellen erstmals wichtige Defektzustände direkt nachgewiesen, denen man schon lange auf der Spur war. Unterstützt durch Computersimulationen, die an der Universität Paderborn erstellt wurden, konnten sie nun die Natur dieser Defekte mit atomarer Genauigkeit bestimmen. Die Defekte lagern sich genau an der Grenze zwischen dem Siliziumwafer und der nur wenige Nanometer dünnen Schicht aus amorphem Silizium an.

Solarzellen aus Silizium könnten theoretisch 30 Prozent des Sonnenlichts in Strom umwandeln, doch tatsächlich sorgen unter anderem Defekte an der Oberfläche der kristallinen Siliziumwafer dafür, dass der Wirkungsgrad im Labor bisher nur auf 25 % getrieben werden konnte. Eine neue Generation von Solarzellen ist gerade dabei den Markt zu erobern. Im Gegensatz zu herkömmlichen Solarzellen wird auf die Oberfläche der Wafer, bei weniger als 200°C, eine nur 10 Nanometer dünne ungeordnete (amorphe) Siliziumschicht aufgedampft.

Das amorphe Silizium ist sowohl in der Lage die Defekte an der Oberfläche teilweise abzusättigen, als auch Strom direkt aus der Solarzelle abzuleiten. Diese Solarzelle erreicht sogar schon im industriellen Maßstab einen Wirkungsgrad von 24.7 % und könnte in Zukunft eine wichtige Rolle auf dem Markt spielen. Bisher waren Forscher jedoch auf Vermutungen angewiesen, welche Zustände die Ladungsträger bei ihrer Reise durch die Grenzfläche zwischen geordneter und ungeordneter Siliziumschicht aufhalten.

HZB-Physiker des Instituts für Silizium-Photovoltaik haben nun einen raffinierten Weg gefunden, um die Defekte an der Grenzfläche direkt aufzuspüren und ihre elektronische Struktur zu bestimmen. „Wenn sich Elektronen an den Defekten anlagern, können wir ihren Spin, also ihr kleines magnetisches Moment, wie eine Sonde nutzen um sie zu studieren“ erklärt Dr. Alexander Schnegg.

Mit einer hochempfindlichen Messmethode, der elektrisch detektierten magnetischen Resonanz (EDMR), hinterlässt der Defekt einen winzigen magnetischen Fingerabdruck im Strom der Solarzelle, wenn diese in einem Magnetfeld mit Mikrowellen bestrahlt wird. Aus diesem magnetischen Fingerabdruck konnten Theoretiker der Universität Paderborn mit quantenchemischen Modellierungen detaillierte Informationen über die Position der Defekte innerhalb der Schichten und ihre Ladungsverlustmechanismen gewinnen.

„Wir haben im Wesentlichen zwei unterschiedliche Familien von Defekten klassifiziert“, sagt Dr. Uwe Gerstmann von der Universität Paderborn, der mit den HZB Forschern im Rahmen des DFG-Schwerpunkts 1601 zusammenarbeitet: „Während eine Art von Defekten eher schwach lokalisiert in der amorphen Schicht sitzt, befindet sich eine zweite Familie direkt an der Grenzfläche, noch in der Kristall-Matrix“.

Damit ist es erstmals gelungen, Prozesse, die den Wirkungsgrad in einer Vielzahl von Silizium-Solarzellen mindern, direkt zu detektieren und mit atomarer Auflösung darzustellen. Die Solarzellen wurden am HZB hergestellt und dort auch vermessen. Die numerischen Methoden wurden an der Uni Paderborn entwickelt. „Diese Ergebnisse können wir nun im nächsten Schritt auch auf andere Typen von Silizium Solarzellen anwenden und so Wege finden, den Wirkungsgrad weiter nach oben und die Kosten nach unten zu treiben“, sagt Schnegg.

Die Arbeit wurde am 27 März 2013 in Phys. Rev. Letters publiziert.

doi: 10.1103/PhysRevLett.110.136803

arö


Das könnte Sie auch interessieren

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.