Kathrin Lange erhält Wilhelm-Ostwald-Nachwuchspreis 2012

Dr. Kathrin Maria Lange erhält für ihre am HZB angefertigte Dissertation den Wilhelm-Ostwald-Nachwuchspreis 2012. Der mit 2500,- Euro dotierte Preis wird von der Wilhelm-Ostwald-Gesellschaft zu Großbothen e.V., der Deutschen Bunsen-Gesellschaft für Physikalische Chemie und der Gesellschaft Deutscher Chemiker verliehen. Die Preisverleihung findet am 9. März in Großbothen bei Leipzig statt, dem Arbeitsort des Nobelpreisträgers für Chemie 1909, Wilhelm Ostwald.

Kathrin Lange hat in ihrer Dissertation die experimentellen Techniken für Flüssigkeitsspektroskopie mit Synchrotronstrahlung entscheidend bereichert. Mit den von ihr entwickelten Methoden wurde es möglich,  chemische und biologischen Proben mit Röntgenstrahlung in natürlicher Umgebung zu untersuchen, zum Beispiel Proteine. Wichtige Erkenntnisse gewann sie unter anderem zu Wasserstoffbrückenbindungen in Flüssigkeiten und zum thermodynamischen Verhalten von Ionen in Lösung.

Das LiXEdrom Spektrometer, welches Kathrin Lange im Rahmen ihrer Doktorarbeit aufbaute, ermöglichte erstmals an einer Synchrotroneinrichtung die Untersuchung von Flüssigkeiten und Lösungen mit weicher Röntgenabsorptions- und hochauflösender Röntgenemissionsspektroskopie (20ev-1000eV) frei von jeglichen Membranen an einem Micro-Jet.

Im Sinne Ostwalds gelang es ihr dabei, Brücken zwischen Physik, Chemie und Biologie zu schlagen, heißt es in der Begründung der Jury.

Die Ergebnisse ihrer Forschungsarbeiten hat sie in einer Vielzahl von Publikationen in hochrangigen Journalen wie „Journal of the American Chemical Society“, „Angewandte Chemie Int. Ed.“ und „Nature Chemistry“ veröffentlicht. Vorträge und Poster auf nationalen und internationalen Konferenzen belegen die wissenschaftliche Relevanz ihrer Arbeit. 

Kathrin Lange hat ihre Doktorarbeit in der Nachwuchsgruppe von Prof. Emad Aziz angefertigt und an der Freien Universität Berlin eingereicht.

IH mit Pressetext der Wilhelm-Ostwald-Gesellschaft


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.