Organische Elektronik: Wie der Kontakt zwischen Kohlenstoffverbindungen und Metall gelingt

Über ihre „Sauerstoff-Ausleger“ nehmen die untersuchten organischen Verbindungen Kontakt zu den Atomen der Metalloberfläche auf. Dadurch verändern sich ihre elektronischen Eigenschaften.
</br>

Über ihre „Sauerstoff-Ausleger“ nehmen die untersuchten organischen Verbindungen Kontakt zu den Atomen der Metalloberfläche auf. Dadurch verändern sich ihre elektronischen Eigenschaften.
© Georg Heimel/HU Berlin

„Organische Elektronik“ steckt schon heute im Display von Smart-Phones und verspricht auch in Zukunft interessante Produkte, zum Beispiel biegsame Leuchtfolien, die Glühbirnen ersetzen sollen, oder Solarzellen, die Sonnenlicht in Strom umwandeln. Ein Problem besteht dabei stets darin, die aktive organische Schicht gut mit Metallkontakten zu verbinden. Auch für diese Aufgabe werden oft organische Moleküle eingesetzt. Allerdings war es bisher nicht möglich, genau vorherzusagen, welche Moleküle diese Aufgabe auch erfüllen. Sie mussten daher im Wesentlichen durch Ausprobieren identifiziert werden. Nun ein hat internationales Team von Wissenschaftlern um Dr. Georg Heimel und Prof. Dr. Norbert Koch vom HZB und der Humboldt-Universität zu Berlin herausgefunden, was diese Moleküle miteinander gemeinsam haben. Ihre Ergebnisse könnten es ermöglichen, die Kontaktschichten zwischen Metallelektroden und aktivem Material in organischen Bauelementen gezielter zu verbessern.

„Wir arbeiten seit mehreren Jahren an dieser Fragestellung und konnten nun mit einer Kombination unterschiedlicher Messmethoden und theoretischer Berechnungen ein schlüssiges Bild erhalten“ sagt Georg Heimel. Dabei haben die Forscher systematisch Moleküle untersucht, deren Rückgrat aus einer Reihe von aromatischen Kohlenstoffringen gebildet wird.  Die Kandidaten unterschieden sich nur in einem Detail: aus dem Rückgrat ragten unterschiedlich viele Sauerstoffatome. Diese so modifizierten Moleküle brachten sie auf die typischen Kontaktmetalle Gold, Silber und Kupfer auf.

Mit Photoelektronen-Spektroskopie (UPS und XPS) an der Synchrotronstrahlungsquelle BESSY II des HZB konnten sie die chemischen Bindungen zwischen Metalloberfläche und organischen Molekülen ermitteln sowie die Energieniveaus von Leitungselektronen messen. Den exakten Abstand der Moleküle zur Metalloberfläche bestimmten Kollegen von der Universität Tübingen mit Hilfe von X-Ray-Standing-Wave-Messungen, die sie an der Synchrotronstrahlungsquelle ESRF in Grenoble durchführten.

Dabei zeigte sich, dass die untersuchten Moleküle bei nahem Kontakt der „Sauerstoff-Ausleger“ mit einigen der Metalloberflächen ihre innere Struktur so veränderten, dass sie ihre halbleitenden Eigenschaften verloren und die metallischen Eigenschaften der Oberfläche annahmen. Trotz vergleichbarer Voraussetzungen zeigte das „nackte“ Rückgratmolekül diesen Effekt nicht. Aus der Beobachtung welche der untersuchten Moleküle sich auf welchem Metall so drastisch veränderten, konnten die Forscher nun allgemeine Richtlinien ableiten. „Wir haben jetzt eine recht genaue Vorstellung davon, wie Moleküle aussehen sollten und welche Eigenschaften sie mitbringen müssen, damit sie gut zwischen einem aktiven organischen Material und einem Metall vermitteln, also gewissermaßen einen Soft Metallic Contact formen“, meint Heimel.

An der Publikation sind auch Experten weiterer Universitäten in Deutschland sowie aus Forschungseinrichtungen in Suzhou (China), Iwate und Chiba (Japan) sowie der ESRF (Frankreich) maßgeblich beteiligt.

Online-Veröffentlichung am 17. Februar 2013 (19 Uhr MEZ) auf Nature Chemistry – DOI 10.1038/NCHEM.1572.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Science Highlight
    21.02.2025
    Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.