Dem Leuchten auf den Grund gegangen - Wissenschaftler klären am HZB die Struktur eines designten Proteins auf

Bändermodell des fluoreszierenden Proteins „Dreiklang“, <br />dessen Struktur am Elektronenspeicherring BESSY<br />vermessen wurde.

Bändermodell des fluoreszierenden Proteins „Dreiklang“,
dessen Struktur am Elektronenspeicherring BESSY
vermessen wurde.

Fluoreszierende Proteine sind wichtige Untersuchungswerkzeuge in den Biowissenschaften: Angekoppelt an andere Eiweißstoffe, lassen sich mit ihrer Hilfe Lebensvorgänge in Zellen und Organismen auf molekularer Ebene genau studieren. Die Fluoreszenz-Proteine werden dazu gezielt zum Leuchten gebracht, beziehungsweise bei Bedarf in den nicht-leuchtenden Zustand überführt. Übertragen gesprochen: Sie werden wie eine Lampe an- oder ausgeschaltet. Am Helmholtz-Zentrum Berlin (HZB) ist es Wissenschaftlern nun erstmals gelungen, die mit der Fluoreszenz verbundenen Strukturmerkmale an ein und demselben Proteinkristall im ein- und ausgeschalteten Zustand zu untersuchen. Die Ergebnisse haben sie in Nature Biotechnology veröffentlicht (doi:10.1038/nbt.1952).

Für ihre Arbeit nutzten die Forscher vom Max-Planck-Institut für Biophysikalische Chemie in Göttingen und von der Freien Universität Berlin die MX-Beamline BL14.2 des HZB-Elektronenspeicherrings BESSY, die im Rahmen des Joint Berlin MX-Laboratory zusammen mit der FU-Berlin, der HU, dem MDC und dem FMP betrieben wird. Mit dem intensiven Röntgenlicht der Beamline können Proteinkristalle mit höchster Auflösung vermessen werden. Untersuchungsobjekt war ein grün fluoreszierendes Protein mit dem Namen „Dreiklang“. Der Proteinkristall wurde zunächst bei Raumtemperatur aus dem fluoreszierenden in den nicht-fluoreszierenden Zustand überführt – der Schalter also auf „Aus“ gestellt. Anschließend vermaßen die Wissenschaftler den Kristall im tiefgefrorenen Zustand bei etwa minus 170 Grad Celsius an der BESSY-Beamline.

„Normalerweise geht ein Proteinkristall kaputt, wenn man es nach der Vermessung wieder auf Raumtemperatur erwärmt“, beschreibt Dr. Uwe Müller, HZB-Arbeitsgruppenleiter „Makromolekulare Kristallographie“ das Besondere der Untersuchungen: „In diesem Fall ist es aber gelungen, das Protein funktionsfähig zu halten.“ So war es möglich, den Proteinkristall bei 30 Grad Celsius in den fluoreszierenden Zustand zu bringen, anschließend erneut einzufrieren und ein zweites Mal an der Beamline zu vermessen. Bei der anschließenden Analyse der Daten stellte das Forscherteam fest, dass sich die Struktur des Proteins im ein- beziehungsweise ausgeschalteten Zustand durch die Zahl der eingelagerten Wassermoleküle unterscheidet.

„Mit der Untersuchung des Dreiklang-Moleküls haben wir am BESSY Neuland betreten“, sagt Uwe Müller. Es handele sich dabei um ein designtes Protein, dass es in dieser Form in der Natur nicht gebe. Müller: „Mit der MX-Beamline lassen sich also nicht nur natürliche Proteine, sondern auch völlig neue Materialien untersuchen. Wir sind mit unserer Arbeit noch ein Stück weiter in den Kernbereich der HZB-Forschung `Funktionale Materialien´ gerückt“, so Müller.

HS


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.