Magnetischer Fingerabdruck zeigt Stromverlust an

HZB-Forscher zeigen, warum lichterzeugter Strom in organischen Solarzellen teilweise verloren geht

Herkömmliche Solarzellen aus kristallinem Silizium werden aufwendig und Energie intensiv hergestellt. Organische Solarzellen sind kostengünstiger, produzieren aber bisher noch zu wenig Strom. Woran das liegt, ist bis heute nicht vollständig geklärt. Eine von HZB-Forschern entwickelte Methode zeigt nun, dass der Stromfluss in der Solarzelle vom Spin der stromtragenden Teilchen abhängen kann.

Seit rund zehn Jahren beschäftigen sich Wissenschaftler mit organischen Solarzellen. Sie können umweltfreundlich hergestellt werden und lassen sich auf unterschiedlichste Materialien, zum Beispiel Plastikfolie, aufbringen. Verglichen mit Silizium-Solarzellen produzieren sie aber nur ein Fünftel der elektrischen Energie – ein Großteil des Stroms versickert im Material.

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben eine Methode entwickelt, die Stromverluste anhand des magnetischen Fingerabdrucks der stromtragenden Teilchen nachweist. Hierfür manipulieren die Forscher auf raffinierte Weise die magnetischen Eigenschaften dieser Teilchen. Gemeinsam mit schottischen Forschern publizieren sie dies in der Zeitschrift Physical Review Letters (10.1103/PhysRevLett.105.176601 / Phys. Rev. Lett. 105, 176601 (2010)).

Da organische Solarzellen aus Kohlenstoff-Verbindungen, also Kunststoffen, bestehen, werden sie auch Plastiksolarzellen genannt. Das Herz der Zelle bildet eine nur 100-Millionstel Millimeter dünne Schicht, die aus zwei Bestandteilen besteht: Polymere und fußballförmige Fullerene. Beide sind miteinander vermischt. Fällt Licht auf die Mischschicht, wird das Polymer in einen angeregten Zustand versetzt, den man Exziton nennt. Trifft ein Exziton auf ein Fußballmolekül springt ein Elektron auf das Fulleren und im Polymer verbleibt ein „Loch“. Damit Strom fließt, müssen die Elektronen und Löcher zu den Kontakten an den jeweils gegenüberliegenden Seiten der Solarzelle gelangen. Die Elektronen hüpfen über das Fulleren, die Löcher auf der Polymerkette. Die Löcher, Wissenschaftler nennen sie Polaronen, können sich auf diesem Weg gegenseitig behindern und senken dadurch den Wirkungsgrad der Solarzelle. Dieser gibt das Verhältnis zwischen gewonnener elektrischer und von der Sonne eingestrahlter Energie an. 

Die Wissenschaftler konnten mit ihrer Methode, der elektrisch detektierten magnetischen Resonanz (EDMR), sichtbar machen, dass die Polaronen sich immer dann behindern, wenn ihr magnetisches Moment (Spin) identisch ist. „Wir konnten diese schon länger vermutete sogenannte Bipolaron-Bildung erstmals sichtbar machen und somit beweisen“, sagt Jan Behrends, der während seiner Promotion am HZB-Institut für Silizium-Photovoltaik die Messungen durchgeführt hat.

Bei der EDMR-Methode manipulieren die Forscher mit Hilfe eines äußeren Magnetfeldes und einer Mikrowelle den Spin der Polaronen. Durch einen Resonanzeffekt lässt sich der vorher zufällig verteilte Spin wie eine Kompassnadel drehen und gezielt beeinflussen. Die Messdaten zeigten, dass der Strom frei fließt, wenn die winzigen Magnete entgegengesetzt ausgerichtet sind und bei gleicher Ausrichtung blockiert wird.

Dank des neuen experimentellen Aufbaus der ursprünglich für Silizium entwickelten Methode, gelang es den Forschern, solche Stromverluste in Plastiksolarzellen bei Raumtemperatur nachzuweisen. Mit dieser grundlegenden Erkenntnis könnten organische Solarzellen weiter verbessert werden, zum Beispiel indem man gezielt Kunststoffe entwickelt, die keine Spinblockade aufweisen.

Franziska Rott


Das könnte Sie auch interessieren

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.