Junginger, T.; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.: A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities. Superconductor Science & Technology 30 (2017), p. 125013/1-14
10.1088/1361-6668/aa8926
Open Access Version
Abstract:
Point contact tunneling (PCT) and low energy muon spin rotation (LE-muSR) are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron (dcMS) and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.