Open Access Version

Abstract:
Die Anpassung der Bandlücke und die Herstellung mittels lösungsbasierter Prozesse charakterisieren Metallhalogenid-Perowskite. Sie sind vielversprechend für die Anwendung in optoelektronischen Bauteilen, die die Abscheidung von hochwertigen Dünnschichten erfordern. Deren Qualität hängt stark vom Kristallisationsverhalten ab, welches durch die Komposition der Lösung bestimmt ist. Ziel dieser Arbeit ist es, Korrelationen im Präkursor-Prozess-Eigenschaftsraum von Metallhalogenid-Perowskit zu bewerten und Formierungsprozesse zu rationalisieren. Phasenreinheit, Morphologie und Absorptionseigenschaften zeichnen die Qualität der Perowskit-Dünnschichten aus. Die Optimierung der Herstellung von hochwertigen Filmen über einen breiten Bandlückenbereich wird zuerst beleuchtet. Die Rationalisierung der Formierungsprozesse erweist sich als fundamental, um reproduzierbare Präparationsroutinen für hochwertige Filme zu entwickeln. Anschließend wird ein optischer in-situ Aufbau zur Rationalisierung von Formierungsprozessen vorgestellt. Abhängig vom Halogenidverhältnis in der MAPb(IxBr1-x)3-Reihe werden verschiedene Formierungswege eingeschlagen. Während sich das reine Bromid direkt und Iodid reiche Perowskite über die intermediäre Solvatphase (MA)2(DMSO)2Pb3I8 bilden, bilden sich gemischte Halogenide zwischen 0.1 ≤ x ≤ 0.6 über beide Wege. Die Formierung über konkurrierende Wege erklärt die kompositorische Heterogenität der gemischten Halogenidproben. Zuletzt werden Formierungsprozesse von Bromid-Perowskiten rationalisiert und Abhängigkeiten der Kinetik von der Lösungskonzentration zeigen sich. Niedrige Konzentrationen führen zu einer beschleunigten Kristallisation und Schichtdickenabnahme des Nassfilms. Dieser Trend wird durch geringere Kolloidwechselwirkungen und niedriger koordinierte Blei-Bromid-Komplexe in verdünnten Lösungen erklärt. Die Korrelation im Präkursor-Prozess-Eigenschaftsraum hebt die Herstellung von Perowskiten aus chemischer Sicht zu einem nicht-trivialen Prozess.