HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University

Dr. Feng Liang hat einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Team auf.

Dr. Feng Liang hat einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Team auf. © HZB

Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.

 

Dr. Feng Liang hat an der Xi'an Jiaotong University in China und an der RWTH Aachen im Fach Maschinenbau promoviert. Im Oktober 2021 kam er als Postdoc an das Institut für Solare Brennstoffe im Rahmen eines Helmholtz-Innovationspool-Projekts. Dort hat er innovative Prototypen für die elektrolytische Wasserspaltung entwickelt, die unter hohem Druck arbeiten.

Die Entwicklung funktionierender Prototypen erfordert ein sehr breites Spektrum an Kenntnissen, nicht nur im Maschinenbau, sondern auch in Materialwissenschaften und Elektrochemie. „Sehr viel Elektrochemie habe ich von Fatwa Abdi und Roel van de Krol gelernt“, sagt Liang. „Sie waren die besten Mentoren, die ich mir vorstellen kann.“

Feng Liang wird (assoziierter) Professor am Department of Mechanical Engineering der Xi'an Jiaotong University. Er arbeitet noch bei der Evaluierung der „programmorientierten Förderung“ im Mai mit und wird danach das HZB verlassen.

„Ab Juni 2025 kann ich meine eigene Gruppe aufbauen, und ich freue mich auf eine gute Zusammenarbeit mit dem HZB“, sagt er. Liang setzt seine Arbeit an Prototypen für die Wasserspaltung an seinem neuen Wirkungsort fort. Roel van de Krol, Direktor des Instituts für Solare Brennstoffe, sagt: „Es ist wunderbar zu sehen, dass seine Arbeit am HZB zu einer Professur geführt hat; das zeigt auch, wie das HZB ein unterstützendes Umfeld für Nachwuchsforschende bietet, damit sie ihre Karriere entwickeln können.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Science Highlight
    21.02.2025
    Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.