Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet

Fotomontage: Die Diagonale teilt das Bild in ein Foto der Lithium-Schwefel-Pouchzelle (links) und das zugehörige Röntgenbild (rechts) während der multimodalen Messung mit Kraftsensor (golden) sowie Temperatursensoren. Auf dem Röntgenbild ist die perforierte Wabenstruktur des Stromkollektors gut zu erkennen. Dieser neue Designansatz reduziert das Gewicht der Zelle, ohne die Leistung zu beeinträchtigen.

Fotomontage: Die Diagonale teilt das Bild in ein Foto der Lithium-Schwefel-Pouchzelle (links) und das zugehörige Röntgenbild (rechts) während der multimodalen Messung mit Kraftsensor (golden) sowie Temperatursensoren. Auf dem Röntgenbild ist die perforierte Wabenstruktur des Stromkollektors gut zu erkennen. Dieser neue Designansatz reduziert das Gewicht der Zelle, ohne die Leistung zu beeinträchtigen. © R. Müller/ HZB

Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

 

Lithium-Schwefel-Batterien besitzen im Vergleich zu klassischen Lithium-Akkus einige Vorzüge: Sie nutzen Schwefel als reichlich vorhandenen Rohstoff, kommen ohne das kritische Element Kobalt aber auch ohne Nickel aus und können eine enorm hohe spezifische Energiedichte erreichen. Prototypzellen schaffen heute bereits bis zu 500 Wh/kg, fast doppelt so viel wie aktuelle Lithium-Ionen-Batterien.

Degradationsprozesse im Blick

Allerdings sind Lithium-Schwefel-Batterien bislang deutlich anfälliger für Degradationsprozesse: Beim Laden und Entladen bilden sich gelöste Polysulfide und Schwefelphasen auf der Lithiumelektrode, die die Leistung und Lebensdauer der Batterie zunehmend verringern. „Diese Prozesse wollen wir durch unsere Forschung aufklären, mit dem Ziel, diesen Batterietyp gezielt zu verbessern“, sagt der HZB-Physiker Dr. Sebastian Risse, der am HZB ein Team zur operando Analyse von Batterien leitet.

Batterie im Taschenformat

Dabei konzentriert er sich auf so genannte Pouchzellen, ein Batterieformat, das in der Industrie weit verbreitet ist. Am HZB Institut „Elektrochemische Energiespeicherung (CE-IEES)“, das von Prof. Yan Lu geleitet wird, wurde daher ein Labor eingerichtet, das auf die Herstellung von Lithium-Schwefel-Batterien in diesem „Taschenformat“ spezialisiert ist. Hier können die unterschiedlichsten Varianten von Lithium-Schwefel-Batterien im Taschenformat hergestellt und untersucht werden. Im Rahmen des BMBF Projekts „SkaLiS“, das von Risse koordiniert wird, hat nun das Team um Risse zusammen mit einer Gruppe  aus dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden eine umfangreiche Studie zu Lithium-Schwefel-Pouchzellen im Fachjournal Advanced Energy Materials veröffentlicht.

Methodenvielfalt

Dafür wurden Batteriezellen in einem am HZB entwickelten Setup mit unterschiedlichen Methoden wie Impedanzspektroskopie, Temperaturverteilung, Kraftmessung und Röntgenbildgebung (Synchrotron- und Laborquelle) während des Auf- oder Entladens untersucht. „Wir haben dabei erstmals sowohl die Bildung von Lithium-Dendriten als auch die Auflösung bzw. Bildung von Schwefelkristalliten während des multilagigen Batteriebetriebs beobachten und dokumentieren können“, sagt Dr. Rafael Müller, HZB-Chemiker und Erstautor der Studie.

Radiographie an der BAM-Beamline

Insbesondere die Phasenkontrastradiographie mit kohärentem Synchrotronlicht an der BAM-Beamline am BESSY II ermöglichte es uns, die nur wenig absorbierende Lithiummetallmorphologie zu verfolgen. Diese Einblicke konnten wir mit anderen Messdaten korrelieren und so ein umfassendes Bild erstellen.“ Mithilfe von Röntgenanalysen im Imaging-Labor des HZBs in Kooperation mit der Gruppe von Dr. Ingo Manke gelang es darüber hinaus, die Bildung von stark absorbierenden Schwefelkristallen während des Batteriebetriebs zu analysieren.

Ausblick: Hochenergiebatteriesysteme

„Unsere Ergebnisse schlagen eine Brücke zwischen Grundlagenforschung und Technologietransfer, insbesondere ermöglichen sie auch Schlussfolgerungen in Bezug auf die Skalierbarkeit dieser Batterietechnologie und für die Weiterentwicklung von Hochenergiebatteriesystemen“, sagt Risse. Unter anderem zeigte das Team, dass ein neuer Designansatz des IWS Dresden vielversprechend ist: Der perforierte und damit deutlich leichtere Kathodenstromkollektor beeinträchtigt die Leistung der Zelle nicht.

Die Ergebnisse dieser Studie werden dazu beitragen, die Leistung und Lebensdauer von Lithium-Schwefel-Batterien zu optimieren, damit dieser vielversprechende Batterietyp die Anforderungen an mobile und stationäre Energiespeichersysteme erfüllen kann.

red/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.