SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier

Der Physiker Michele Segantini demonstriert, wie kompakt der EPRoC-Sensor ist.

Der Physiker Michele Segantini demonstriert, wie kompakt der EPRoC-Sensor ist. © Luca Segantini

Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.

Als erste Anzeichen, dass Lebensmittel verderben, bilden sich in den meisten Produkten hochreaktive Moleküle, so genannte freie Radikale. Diese Moleküle nachzuweisen, ist bislang sehr aufwändig: Die einzige direkte Methode ist die paramagnetische Elektronenspinresonanz (EPR). Herkömmliche EPR-Geräte sind jedoch teuer und platzraubend, sie benötigen Elektromagnete, die keinen Batteriebetrieb zulassen und auch in der Anschaffung und im Betrieb viel Geld kosten. Alternativ stehen chemische Methoden zur Verfügung, die nicht nur sehr arbeitsaufwändig sind, sondern auch giftige Abfälle erzeugen.

EPR-on-a-Chip-Sensor

Doch nun bietet das Spin-Off-Unternehmen SpinMagIC eine kompakte und preisgünstige Alternative zu herkömmlichen EPR-Geräten: Einen EPR-Sensor, der auf einen kleinen Chip passt (EPRoC). „Wir werden kleine, tragbare und erschwingliche EPR-Geräte herstellen, die wir auf die Bedürfnisse des Kunden zuschneiden können“, erklärt der Physiker Michele Segantini (HZB), der in der Abteilung von Prof. Klaus Lips gerade seine Promotion abschließt. Zum Gründerteam gehören neben Segantini der Elektrotechniker Anh Chu, der Physiker Belal Alnajjar, die beide an der Universität Stuttgart im Team von Professor Jens Anders forschen, sowie der Betriebswirtschaftler Jakob Fitschen.

Die Entwicklung des EPRoC geht auf eine Idee von Klaus Lips (HZB) und Jens Anders (Universität Stuttgart) zurück, die 2019 mit dem Technologietransferpreis des HZB ausgezeichnet wurde. Die weitere Entwicklung wurde vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. „Seitdem ist viel passiert, so dass wir jetzt eine Ausgründung planen können“, sagt Segantini. Während das Team an der Universität Stuttgart die „Hardware“ optimierte, untersuchte Segantini, wo und wie die Erfindung auf dem Markt eingesetzt werden könnte.

„Wir sehen ein großes Potenzial für Anwendungen, zunächst vor allem in der Lebensmittelproduktion“, sagt Segantini. Während seiner Doktorarbeit nahm er Kontakt zu einer Vielzahl von Branchen auf und identifizierte Olivenölhersteller und Brauereien als Pilotkunden. Bisher haben diese Unternehmen ihre Produkte mit aufwändigen chemischen Methoden getestet, bei denen relevante Mengen giftiger Abfälle anfallen. „EPRoC ist nicht nur viel empfindlicher, sondern auch weniger zeitaufwändig, so dass die Proben während des gesamten Prozesses wiederholt analysiert werden können. Dies liefert zusätzliche Erkenntnisse, die zur Optimierung der Produktionsprozesse genutzt werden können, um die Haltbarkeit und Oxidationsbeständigkeit der Produkte zu verlängern“, betont Segantini.

Für die Zukunft planen die Gründer, ihr Produkt auch für andere Anwendungsbereiche wie medizinische Diagnostik, Arzneimittelentwicklung, Halbleitertechnologie und das Monitoring von Batterien anzupassen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.