SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier

Der Physiker Michele Segantini demonstriert, wie kompakt der EPRoC-Sensor ist.

Der Physiker Michele Segantini demonstriert, wie kompakt der EPRoC-Sensor ist. © Luca Segantini

Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.

Als erste Anzeichen, dass Lebensmittel verderben, bilden sich in den meisten Produkten hochreaktive Moleküle, so genannte freie Radikale. Diese Moleküle nachzuweisen, ist bislang sehr aufwändig: Die einzige direkte Methode ist die paramagnetische Elektronenspinresonanz (EPR). Herkömmliche EPR-Geräte sind jedoch teuer und platzraubend, sie benötigen Elektromagnete, die keinen Batteriebetrieb zulassen und auch in der Anschaffung und im Betrieb viel Geld kosten. Alternativ stehen chemische Methoden zur Verfügung, die nicht nur sehr arbeitsaufwändig sind, sondern auch giftige Abfälle erzeugen.

EPR-on-a-Chip-Sensor

Doch nun bietet das Spin-Off-Unternehmen SpinMagIC eine kompakte und preisgünstige Alternative zu herkömmlichen EPR-Geräten: Einen EPR-Sensor, der auf einen kleinen Chip passt (EPRoC). „Wir werden kleine, tragbare und erschwingliche EPR-Geräte herstellen, die wir auf die Bedürfnisse des Kunden zuschneiden können“, erklärt der Physiker Michele Segantini (HZB), der in der Abteilung von Prof. Klaus Lips gerade seine Promotion abschließt. Zum Gründerteam gehören neben Segantini der Elektrotechniker Anh Chu, der Physiker Belal Alnajjar, die beide an der Universität Stuttgart im Team von Professor Jens Anders forschen, sowie der Betriebswirtschaftler Jakob Fitschen.

Die Entwicklung des EPRoC geht auf eine Idee von Klaus Lips (HZB) und Jens Anders (Universität Stuttgart) zurück, die 2019 mit dem Technologietransferpreis des HZB ausgezeichnet wurde. Die weitere Entwicklung wurde vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. „Seitdem ist viel passiert, so dass wir jetzt eine Ausgründung planen können“, sagt Segantini. Während das Team an der Universität Stuttgart die „Hardware“ optimierte, untersuchte Segantini, wo und wie die Erfindung auf dem Markt eingesetzt werden könnte.

„Wir sehen ein großes Potenzial für Anwendungen, zunächst vor allem in der Lebensmittelproduktion“, sagt Segantini. Während seiner Doktorarbeit nahm er Kontakt zu einer Vielzahl von Branchen auf und identifizierte Olivenölhersteller und Brauereien als Pilotkunden. Bisher haben diese Unternehmen ihre Produkte mit aufwändigen chemischen Methoden getestet, bei denen relevante Mengen giftiger Abfälle anfallen. „EPRoC ist nicht nur viel empfindlicher, sondern auch weniger zeitaufwändig, so dass die Proben während des gesamten Prozesses wiederholt analysiert werden können. Dies liefert zusätzliche Erkenntnisse, die zur Optimierung der Produktionsprozesse genutzt werden können, um die Haltbarkeit und Oxidationsbeständigkeit der Produkte zu verlängern“, betont Segantini.

Für die Zukunft planen die Gründer, ihr Produkt auch für andere Anwendungsbereiche wie medizinische Diagnostik, Arzneimittelentwicklung, Halbleitertechnologie und das Monitoring von Batterien anzupassen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Nachricht
    10.10.2024
    HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Ein HZB-Team hat mit Freiberg Instruments einen innovativen Monochromator entwickelt, der nun auf den Markt kommt. Das Gerät ermöglicht es, die optoelektronischen Eigenschaften von Halbleitermaterialien kontinuierlich und rasch mit hoher Präzision zu erfassen, und zwar über einen breiten Spektralbereich vom nahen Infrarot bis ins tiefe Ultraviolett. Dabei wird Streulicht effizient unterdrückt. Die Innovation ist für die Entwicklung neuer Materialien interessant und auch einsetzbar, um industrielle Prozesse besser zu kontrollieren.
  • Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Nachricht
    27.09.2024
    Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Vor rund drei Jahren ging das Reallabor am HZB in Betrieb. Seitdem liefert die Photovoltaik-Fassade Strom aus Sonnenlicht. Am 27. September 2024 wurde die Marke von 100 Megawattstunden erreicht.

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.