Sonderforschungsbereich „Nanoskalige Metalle“ wirbt 11 Millionen Euro ein

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben.

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben. © Felix Stete

Am neuen SFB 1636 „Elementarprozesse lichtgetriebener Reaktionen an nanoskaligen Metallen“ beteiligen sich mehrere Arbeitsgruppen aus dem HZB.

Nanoskalige Metalle in der Forschung

„Wir sind begeistert und freuen uns auf die neuen Synergien, die durch den neuen Sonderforschungsbereich entstehen können“, sagt Prof. Matias Bargheer, der einer der Sprecher des neuen SFB an der Universität Potsdam ist. Aus dem HZB sind die Arbeitsgruppen um Renske van der Veen, Yan Lu und Alexander Föhlisch eingebunden, zusätzlich zum Team von Bargheer, der an der Universität Potsdam und am HZB eine gemeinsame Forschungsgruppe leitet.

Das Forschungsvorhaben beschäftigt sich mit elementaren Prozessen, die lichtgesteuerte chemische Reaktionen an Metallen im Nanomaßstab auslösen. „An diesem faszinierenden Übergang zwischen Physik und Chemie sind noch viele Fragen unbeantwortet. Schon jetzt können wir unsere Konzepte auf organische Kupplungsreaktionen und Polymerisationen anwenden, z.B. um Nanopartikel asymmetrisch zu funktionalisieren“, beschreibt Prof. Dr. Matias Bargheer die Herausforderungen und Perspektiven ihrer gemeinsamen Forschung.

Antonia Rötger

  • Link kopieren

Das könnte Sie auch interessieren

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.