Spintronik: Germanium-Tellurid zeigt ungewöhnliches Verhalten

Links: Elektronische Struktur von GeTe, aufgenommen an BESSY-II, zeigt die Banddispersionen von Bulk- (BS) und Oberflächen-Rashba-Zuständen (SS1, SS2) im Gleichgewicht. Mitte: Vergrößerung des Bereichs der Rashba-Zustände, gemessen mit 6 eV-Photonen des fs-Lasers. Rechts: Entsprechende Dispersionen außerhalb des Gleichgewichts nach Anregung durch den Wärmepuls.

Links: Elektronische Struktur von GeTe, aufgenommen an BESSY-II, zeigt die Banddispersionen von Bulk- (BS) und Oberflächen-Rashba-Zuständen (SS1, SS2) im Gleichgewicht. Mitte: Vergrößerung des Bereichs der Rashba-Zustände, gemessen mit 6 eV-Photonen des fs-Lasers. Rechts: Entsprechende Dispersionen außerhalb des Gleichgewichts nach Anregung durch den Wärmepuls.

Aufgrund seines gigantischen Rashba-Effekts gilt Germaniumtellurid (GeTe) als guter Kandidat für den Einsatz in spintronischen Bauelementen. Nun hat ein Team am HZB ein weiteres faszinierendes Phänomen in GeTe entdeckt. Dafür untersuchten die Forschenden die elektronische Reaktion auf thermische Anregung der Proben. Überraschenderweise verlief die anschließende Relaxation ganz anders als bei herkömmlichen Halbmetallen. Durch die gezielte Steuerung von Details der elektronischen Struktur könnten in dieser Materialklasse neue Funktionalitäten erschlossen werden.  

In den letzten Jahrzehnten hat die Komplexität der auf Silizium basierenden Technologien exponentiell zugenommen, getrieben von der wachsenden Nachfrage nach immer leistungsfähigeren Geräten. Das Siliziumzeitalter neigt sich jedoch seinem Ende zu.  Mit zunehmender Miniaturisierung werden unerwünschte Quanteneffekte und Wärmeverluste zu einem immer größeren Hindernis. Weitere Fortschritte erfordern neue Materialien, die Quanteneffekte nutzen, anstatt sie zu vermeiden. Spintronische Bauelemente, die die Spins der Elektronen und nicht deren Ladung nutzen, versprechen energieeffizientere Bauelemente mit deutlich verbesserten Schaltzeiten und völlig neuen Funktionen.

Spin-Orbit-Kopplung als Voraussetzung

Kandidaten für spintronische Bauelemente sind Halbleitermaterialien, bei denen die Spins mit der Orbitalbewegung der Elektronen gekoppelt sind. Dieser so genannte Rashba-Effekt tritt in einer Reihe von nichtmagnetischen Halbleitern und halbmetallischen Verbindungen auf und ermöglicht es unter anderem, die Spins im Material durch ein elektrisches Feld zu manipulieren. Germaniumtellurid (GeTe) zeigt einen der größten Rashba-Effekte auf, die in Halbleitern beobachtet wurden.

Wärmepuls, dann Analyse an BESSY II

Bislang wurde GeTe jedoch nur im thermischen Gleichgewicht untersucht. Nun hat ein Team um den HZB-Physiker Jaime-Sánchez-Barriga an BESSY II erstmals gezielt auf einen Nicht-Gleichgewichtszustand in GeTe-Proben zugegriffen und detailliert untersucht, wie sich das Gleichgewicht in dem Material binnen billionstel Sekunden (10-12 Sekunden) wiederherstellt. Dabei stießen die Physiker auf ein neues und unerwartetes Phänomen.

Zunächst wurde die Probe mit einem Infrarotpuls angeregt und dann mit hoher Zeitauflösung mittels winkelaufgelöster Photoemissionsspektroskopie (tr-ARPES) gemessen. "Zum ersten Mal konnten wir alle Phasen der Anregung, Thermalisierung und Relaxation auf ultrakurzen Zeitskalen beobachten und charakterisieren", sagt Sánchez-Barriga.

Unerwartetes Phänomen

Das wichtigste Ergebnis: "Die Daten zeigen, dass das thermische Gleichgewicht zwischen dem Elektronensystem und dem Kristallgitter auf höchst unkonventionelle und kontraintuitive Weise wiederhergestellt wird", erklärt einer der Hauptautoren, Oliver Clark. 

In einfachen metallischen Systemen wird das thermische Gleichgewicht in erster Linie durch die Wechselwirkung zwischen Elektronen untereinander und zwischen Elektronen und den Gitterschwingungen im Kristall (Phononen) hergestellt. Dieser Prozess verlangsamt sich mit sinkenden Temperaturen immer mehr. Bei Germaniumtellurid beobachteten die Physiker jedoch ein entgegengesetztes Verhalten: Je niedriger die Gittertemperatur der Probe ist, desto schneller stellt sich das thermische Gleichgewicht nach der Anregung mit dem Wärmeimpuls ein.  "Das war sehr überraschend", sagt Sánchez-Barriga.

Berechnungen helfen bei der Interpretation

Mit theoretischen Berechnungen im Rahmen des Boltzmann-Ansatzes, die von einem Team der Technischen Universität Nanyang durchgeführt wurden, konnten sie die zugrunde liegenden mikroskopischen Prozesse interpretieren und drei verschiedene Thermalisierungsprozesse unterscheiden: Wechselwirkungen zwischen Elektronen innerhalb desselben Bandes, in verschiedenen Bändern und Elektronen mit Phononen.

Neue Funktionalitäten denkbar

Es scheint, dass die Wechselwirkung zwischen Elektronen die Dynamik dominiert und mit abnehmender Gittertemperatur deutlich schneller wird. "Dies kann durch den Einfluss der Rashba-Aufspaltung auf die Stärke der fundamentalen elektronischen Wechselwirkungen erklärt werden. Dieses Verhalten ist auf alle Rashba-Halbleiter anwendbar", sagt Sánchez-Barriga: "Die vorliegenden Ergebnisse sind wichtig für zukünftige Anwendungen von Rashba-Halbleitern und deren Anregungen in der ultraschnellen Spintronik."

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.