Spintronik: Germanium-Tellurid zeigt ungewöhnliches Verhalten

Links: Elektronische Struktur von GeTe, aufgenommen an BESSY-II, zeigt die Banddispersionen von Bulk- (BS) und Oberflächen-Rashba-Zuständen (SS1, SS2) im Gleichgewicht. Mitte: Vergrößerung des Bereichs der Rashba-Zustände, gemessen mit 6 eV-Photonen des fs-Lasers. Rechts: Entsprechende Dispersionen außerhalb des Gleichgewichts nach Anregung durch den Wärmepuls.

Links: Elektronische Struktur von GeTe, aufgenommen an BESSY-II, zeigt die Banddispersionen von Bulk- (BS) und Oberflächen-Rashba-Zuständen (SS1, SS2) im Gleichgewicht. Mitte: Vergrößerung des Bereichs der Rashba-Zustände, gemessen mit 6 eV-Photonen des fs-Lasers. Rechts: Entsprechende Dispersionen außerhalb des Gleichgewichts nach Anregung durch den Wärmepuls.

Aufgrund seines gigantischen Rashba-Effekts gilt Germaniumtellurid (GeTe) als guter Kandidat für den Einsatz in spintronischen Bauelementen. Nun hat ein Team am HZB ein weiteres faszinierendes Phänomen in GeTe entdeckt. Dafür untersuchten die Forschenden die elektronische Reaktion auf thermische Anregung der Proben. Überraschenderweise verlief die anschließende Relaxation ganz anders als bei herkömmlichen Halbmetallen. Durch die gezielte Steuerung von Details der elektronischen Struktur könnten in dieser Materialklasse neue Funktionalitäten erschlossen werden.  

In den letzten Jahrzehnten hat die Komplexität der auf Silizium basierenden Technologien exponentiell zugenommen, getrieben von der wachsenden Nachfrage nach immer leistungsfähigeren Geräten. Das Siliziumzeitalter neigt sich jedoch seinem Ende zu.  Mit zunehmender Miniaturisierung werden unerwünschte Quanteneffekte und Wärmeverluste zu einem immer größeren Hindernis. Weitere Fortschritte erfordern neue Materialien, die Quanteneffekte nutzen, anstatt sie zu vermeiden. Spintronische Bauelemente, die die Spins der Elektronen und nicht deren Ladung nutzen, versprechen energieeffizientere Bauelemente mit deutlich verbesserten Schaltzeiten und völlig neuen Funktionen.

Spin-Orbit-Kopplung als Voraussetzung

Kandidaten für spintronische Bauelemente sind Halbleitermaterialien, bei denen die Spins mit der Orbitalbewegung der Elektronen gekoppelt sind. Dieser so genannte Rashba-Effekt tritt in einer Reihe von nichtmagnetischen Halbleitern und halbmetallischen Verbindungen auf und ermöglicht es unter anderem, die Spins im Material durch ein elektrisches Feld zu manipulieren. Germaniumtellurid (GeTe) zeigt einen der größten Rashba-Effekte auf, die in Halbleitern beobachtet wurden.

Wärmepuls, dann Analyse an BESSY II

Bislang wurde GeTe jedoch nur im thermischen Gleichgewicht untersucht. Nun hat ein Team um den HZB-Physiker Jaime-Sánchez-Barriga an BESSY II erstmals gezielt auf einen Nicht-Gleichgewichtszustand in GeTe-Proben zugegriffen und detailliert untersucht, wie sich das Gleichgewicht in dem Material binnen billionstel Sekunden (10-12 Sekunden) wiederherstellt. Dabei stießen die Physiker auf ein neues und unerwartetes Phänomen.

Zunächst wurde die Probe mit einem Infrarotpuls angeregt und dann mit hoher Zeitauflösung mittels winkelaufgelöster Photoemissionsspektroskopie (tr-ARPES) gemessen. "Zum ersten Mal konnten wir alle Phasen der Anregung, Thermalisierung und Relaxation auf ultrakurzen Zeitskalen beobachten und charakterisieren", sagt Sánchez-Barriga.

Unerwartetes Phänomen

Das wichtigste Ergebnis: "Die Daten zeigen, dass das thermische Gleichgewicht zwischen dem Elektronensystem und dem Kristallgitter auf höchst unkonventionelle und kontraintuitive Weise wiederhergestellt wird", erklärt einer der Hauptautoren, Oliver Clark. 

In einfachen metallischen Systemen wird das thermische Gleichgewicht in erster Linie durch die Wechselwirkung zwischen Elektronen untereinander und zwischen Elektronen und den Gitterschwingungen im Kristall (Phononen) hergestellt. Dieser Prozess verlangsamt sich mit sinkenden Temperaturen immer mehr. Bei Germaniumtellurid beobachteten die Physiker jedoch ein entgegengesetztes Verhalten: Je niedriger die Gittertemperatur der Probe ist, desto schneller stellt sich das thermische Gleichgewicht nach der Anregung mit dem Wärmeimpuls ein.  "Das war sehr überraschend", sagt Sánchez-Barriga.

Berechnungen helfen bei der Interpretation

Mit theoretischen Berechnungen im Rahmen des Boltzmann-Ansatzes, die von einem Team der Technischen Universität Nanyang durchgeführt wurden, konnten sie die zugrunde liegenden mikroskopischen Prozesse interpretieren und drei verschiedene Thermalisierungsprozesse unterscheiden: Wechselwirkungen zwischen Elektronen innerhalb desselben Bandes, in verschiedenen Bändern und Elektronen mit Phononen.

Neue Funktionalitäten denkbar

Es scheint, dass die Wechselwirkung zwischen Elektronen die Dynamik dominiert und mit abnehmender Gittertemperatur deutlich schneller wird. "Dies kann durch den Einfluss der Rashba-Aufspaltung auf die Stärke der fundamentalen elektronischen Wechselwirkungen erklärt werden. Dieses Verhalten ist auf alle Rashba-Halbleiter anwendbar", sagt Sánchez-Barriga: "Die vorliegenden Ergebnisse sind wichtig für zukünftige Anwendungen von Rashba-Halbleitern und deren Anregungen in der ultraschnellen Spintronik."

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.