Strahldiagnostik für zukünftige Beschleuniger im Tischformat

Aus den Interferenzmustern bei unterschiedlichen Brennweiten und Photonenintensitäten lassen sich Aussagen über die Qualität des Strahls gewinnen.

Aus den Interferenzmustern bei unterschiedlichen Brennweiten und Photonenintensitäten lassen sich Aussagen über die Qualität des Strahls gewinnen. © www.nature.com/articles/s42005-021-00717-x

Die Simulation zeigt das Prinzip eines Laser-Wakefield-Beschleunigers: Der Laserpuls (nicht abgebildet) bewegt sich nach rechts und verdrängt alle Plasmaelektronen aus seiner Bahn. Dabei erzeugt er Blasen aus positiv geladenen Ionen, deren starke elektrische Felder Elektronen anziehen und beschleunigen, während sie mit dem Laserpuls mitfliegen.

Die Simulation zeigt das Prinzip eines Laser-Wakefield-Beschleunigers: Der Laserpuls (nicht abgebildet) bewegt sich nach rechts und verdrängt alle Plasmaelektronen aus seiner Bahn. Dabei erzeugt er Blasen aus positiv geladenen Ionen, deren starke elektrische Felder Elektronen anziehen und beschleunigen, während sie mit dem Laserpuls mitfliegen. © Joshua Ludwig, cc 4.0 wikimedia.org/wiki/File:Frame_000000100_extra_terrible_resolution.png

Seit Jahrzehnten wurden Teilchenbeschleuniger immer größer. Inzwischen haben Ringbeschleuniger mit Umfängen von vielen Kilometern eine praktische Grenze erreicht. Auch Linearbeschleuniger im GHz-Bereich erfordern sehr große Baulängen. Seit einigen Jahren gibt es jedoch eine Alternative: „Teilchenbeschleuniger im Tischformat“, die auf der Laseranregung von Kielwellen in Plasmen (laser wakefield) basieren. Solche kompakten Teilchenbeschleuniger wären insbesondere für künftige beschleunigergetriebene Lichtquellen interessant, werden aber auch für die Hochenergiephysik untersucht. Ein Team aus dem Helmholtz-Zentrum Berlin (HZB) und der Physikalisch-Technischen Bundesanstalt (PTB) hat eine Methode entwickelt, um den Querschnitt der so beschleunigten Elektronenpakete präzise zu vermessen.  Dadurch rücken Anwendungen dieser neuen Beschleunigertechnologien für Medizin und Forschung näher.

Das Prinzip der Laser-Wakefield-Beschleuniger: Ein Hochleistungslaser regt in einem Plasma eine Ladungswelle an, die sich mit der Geschwindigkeit des Laserpulses fortpflanzt und ihrem „Kielwasser“ Elektronen hinterherzieht und so beschleunigt. Elektronenenergien im GeV-Bereich können mit dieser Technik schon seit längerem erreicht werden. Allerdings sind die so erzeugten Elektronenpakete bisher zu klein und zu schlecht fokussiert, um die von ihnen abgegebene Synchrotronstrahlung zu nutzen, ein intensives, kohärentes Licht, das für die Forschung in vielen unterschiedlichen Disziplinen eingesetzt wird.

Anmerkung:

Die hier geschilderte Arbeit findet im Rahmen des Projekts ATHENA – „Accelerator Technology Helmholtz Infrastructure“ statt.  Das ist eine neue Forschungs- und Entwicklungsplattform der Helmholtz-Gemeinschaft für Beschleunigertechnologien. Auf Grundlage innovativer plasmabasierter Teilchenbeschleuniger und hochmoderner Lasertechnologie sollen zwei Leuchtturmprojekte aufgebaut werden: bei DESY in Hamburg eine Elektronen- und in Dresden eine Hadronenbeschleunigeranlage. An beiden Anlagen sollen verschiedener Einsatzgebiete entwickelt werden, die von einem kompakten Freie-Elektronen-Laser über neuartige medizinische Anwendungen bis hin zu neuen Einsatzmöglichkeiten in Kern- und Teilchenphysik reichen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.