Neues Instrument an BESSY II startet in den Nutzerbetrieb

Das Russisch-Deutsche Labor betreibt eine Beamline an BESSY II.

Das Russisch-Deutsche Labor betreibt eine Beamline an BESSY II. © HZB/Michael Setzpfandt

Ab der nächsten Strahlzeit steht der neue Messplatz auch anderen Nutzern zur Verfügung.

Ab der nächsten Strahlzeit steht der neue Messplatz auch anderen Nutzern zur Verfügung. © HZB/Michael Setzpfandt

Am 28. 10. 2019 wurde ein neues Instrument an die Nutzerschaft von BESSY II übergeben. Das Instrument wurde durch das Russisch-Deutsche Labor an BESSY II entwickelt. Monochromator und Apparatur für spin- und winkelaufgelöste Photoemission haben ihre Testphase erfolgreich absolviert und ermöglichen präzise Messungen der elektronischen Bandstruktur mit Spinauflösung von unterschiedlichen Materialklassen wie topologischen Isolatoren und magnetischen Sandwichstrukturen, aber auch von neuartigen Solarzellenmaterialien auf Perowskitbasis. Ebenso wurde ein Photoelektronenmikroskop entwickelt.

Das Russisch-Deutsche Labor existiert seit mehr als 15 Jahren bei BESSY II. Wissenschaftlerinnen und Wissenschaftler betreiben seitdem ein eigenes Strahlrohr für Absorptionsspektroskopie und Photoelektronenspektroskopie. Nun haben sie zusätzlich zu dem Dipol-Strahlrohr auch einen leistungsstarken Messplatz für spin- und winkelaufgelöste Photoelektronenspektroskopie und Photoelektronenmikroskopie an einem Undulatorstrahlrohr aufgebaut. Dieser Messplatz ist in Zusammenarbeit mit der Technischen Universität Dresden und der Freien Universität Berlin entstanden; er wurde vom Bundesministerium für Bildung und Forschung mit einer Million Euro finanziert. Von der kommenden Strahlzeit an steht dieser Messplatz nun auch russischen und deutschen Nutzerteams für Kooperationen zur Verfügung.

Internationaler Workshop

Prof. Eckart Rühl von der Freien Universität Berlin, Vorsitzender des Lenkungsausschusses des Labors, hebt die starke Verbundenheit mit den russischen Kollegen hervor: "Insbesondere mit dem Ziel, die russischen Forschergruppen mit den neuen Möglichkeiten des Instruments vertraut zu machen, haben wir die Eröffnung des neuen Instruments in einen internationalen Workshop eingebettet." Sieben Forscherinnen und 19 Forscher aus Russland, Deutschland, Spanien und Japan werden an zwei Tagen über ihre Ergebnisse berichten. 

"Die Spin-Bahn-Wechselwirkung, also die Kopplung von magnetischer Ausrichtung und Bewegungsrichtung der Elektronen,  hat sich in den vergangenen Jahren kontinuierlich zu einem zentralen Thema in der Physik der Festkörper entwickelt, insbesondere durch die neue Materialklasse der Topologischen Isolatoren, deren Entdeckung durch den Nobelpreis für Physik 2016 gewürdigt wurde", erklärt Prof. Oliver Rader vom Helmholtz-Zentrum Berlin, in dessen Abteilung das neue Instrument angesiedelt ist. "Das führte international zu stark steigender Nachfrage nach Experimenten, mithilfe derer der Spin direkt nachgewiesen werden kann." Auch das aktuelle Interesse an stabilen zweidimensionalen Festkörpern könnte dazu beitragen, denn in den letzten Jahren wurden neuartige zweidimensionale Magnete wie CrI3 entdeckt.

Empfang in der Russischen Botschaft

Welchen hohen Stellenwert dem Labor beigemessen wird, zeigt die Beteiligung der russischen Botschaft: Der Botschaftsrat im Referat für Bildungs-, Wissenschafts- und Technikfragen, Alexander Rusinov, sprach zum Auftakt und am Abend empfängt der Botschafter die Teilnehmerinnen und Teilnehmer.

Kooperationspartner:

Getragen wird die Kooperation von deutscher Seite von der Freien Universität Berlin, der Technischen Universität Dresden, der Technischen Universität Freiberg und dem Helmholtz-Zentrum Berlin sowie auf russischer Seite von der Staatlichen Universität St. Petersburg, dem Kurchatov Institut (Moskau), dem Ioffe Institut (St. Petersburg) und dem Shubnikov Institut für Kristallographie (Moskau).

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II haben nun ein Team von Wissenschaftlern mehrerer chinesischer Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Nachricht
    22.10.2024
    Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Zehn Teams am Helmholtz-Zentrum Berlin bauen eine langfristige internationale Allianz auf, um gemeinsam Verfahren zu entwickeln, die die Reproduzierbarkeit von Perowskit-Materialien sicherstellen. Das Projekt TEAM PV wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.