Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren

(a) Neutronen-Eigenspannungsmessung an einer Schweißprobe aus handelsüblichen Stahl, (b) Magnetfeldmessung, (c) Schweißnahtquerschliff.

(a) Neutronen-Eigenspannungsmessung an einer Schweißprobe aus handelsüblichen Stahl, (b) Magnetfeldmessung, (c) Schweißnahtquerschliff. © BAM

Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern.

Neutronenmessungen sind nach wie vor das Verfahren der Wahl, um vorhandene Eigenspannungen tief im Inneren von Materialien sehr exakt zu ermitteln. Hohe Unterschiede in Eigenspannungen sind für ein Material gleichbedeutend mit großem „Stress“, unter denen es sogar reißen kann. Allerdings stehen Neutronen nicht einfach so zur Verfügung, sondern erfordern Großgeräte wie die Berliner Neutronenquelle am HZB.

Ein Team des Fachbereichs 8.4 von der Bundesanstalt für Materialforschung (BAM) arbeitet daran, feinste Materialveränderung in ferromagnetischen Materialien frühzeitig zu identifizieren. Nun sind sie auf diesem Weg einen großen Schritt weiter gekommen. Die Forscher untersuchten dafür zunächst die sehr schwachen Magnetfelder von Schweißnähten aus einem ferromagnetischen Stahl. Mit Hilfe von speziellen Magnetfeldsensoren (sogenannten GMR-Sensoren; engl.: giant magneto resistance, dt.: Riesenmagnetwiderstand) gelang dies mit einer deutlich höheren Empfindlichkeit als sie zum Vermessen des Erdmagnetfelds notwendig ist und mit einer Ortsauflösung im zehntel Mikrometerbereich.

Im Anschluss identifizierten die Forscher die unterschiedlichen Materialeigenheiten der Schweißnähte, die beim Schweißen durch Erhitzen und Abkühlen des Materials entstehen. Dabei stellten sie überraschende Zusammenhänge fest: bereits geringfügige Veränderungen im Werkstoff, erzeugten Variationen im Magnetfeld. Die größten und deutlichsten Magnetfeldänderungen zeigten sich dabei in Bereichen mit homogener Mikrostruktur der Proben.

Mit Hilfe der Neutronenanalysen am HZB konnten die Forscher unter Leitung von Prof. Giovanni Bruno ihre Vermutung belegen, dass offenbar genau in diesen Bereichen stark unterschiedliche Eigenspannungsniveaus aufeinandertreffen.

Gegenwärtig sind die Forscher von der BAM auf der Suche, unter welchen Umständen Eigenspannungsgradienten solch hohe magnetische Streufelder erzeugen. Es lohnt sich, die Umstände noch genauer zu untersuchen. Damit rückt die Vision näher, mit Hilfe von Magnetfeldsensoren relevante Materialveränderungen bereits frühzeitig zu erkennen, bevor ein Riss überhaupt entsteht – und zwar preiswert und zerstörungsfrei.

Publiziert im Journal of Nondestructive Evaluation, 2018, Band 37: Influence of the microstructure on magnetic stray fields of low-carbon steel welds; R. Stegemann, S. Cabeza, M. Pelkner, V. Lyamkin, A. Pittner, D. Werner, R. Wimpory, M. Boin, M. Kreutzbruck, G. Bruno.

Robert Stegemann

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II haben nun ein Team von Wissenschaftlern mehrerer chinesischer Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.