Starre Ordnung konkurriert mit Supraleitung

Streifenanordnung von Ladungstr&auml;gern in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+x</sub> [2]. Die Abbildung zeigt die Struktur mit einer Periode von etwa einem Nanometer (vorn) und das zugeh&ouml;rige Beugungsbild (hinten) in Form einer sogenannten Fouriertransformation (Yazdani Lab, Princeton University).

Streifenanordnung von Ladungsträgern in Bi2Sr2CaCu2O8+x [2]. Die Abbildung zeigt die Struktur mit einer Periode von etwa einem Nanometer (vorn) und das zugehörige Beugungsbild (hinten) in Form einer sogenannten Fouriertransformation (Yazdani Lab, Princeton University).

Heute in Science Express: In Hochtemperatursupraleitern wie den Cupraten können die Ladungsträger sich zu winzigen „Nanostreifen“ anordnen, was die Supraleitung unterdrückt, zeigten Gastforscher aus Princeton und Vancouver an BESSY II

Supraleiter sind Materialien, die elektrischen Strom ohne Energieverlust leiten. Klassische Supraleiter müssen dafür jedoch bis fast zum absoluten Nullpunkt (minus 273 Grad Celsius) heruntergekühlt werden, und selbst die „Hochtemperatur-Supraleiter“ benötigen noch sehr tiefe Temperaturen von minus 200 Grad Celsius. Obwohl diese Kühlung aufwändig ist, werden Supraleiter bereits in vielen Bereichen eingesetzt, beispielsweise in der Medizin für die Magnetresonanztomographie. Materialien, die auch bei Raumtemperatur Strom verlustfrei leiten, gibt es trotz großer Anstrengungen noch immer nicht.

Hochtemperatursupraleiter sind seit 1986 bekannt, nur ein Jahr später erhielten ihre Entdecker den Nobelpreis. Hochtemperatursupraleitung findet man in der Materialklasse der Cuprate, komplexen Verbindungen aus Kupfer und Sauerstoff sowie weiteren Elementen. Doch trotz intensiver Forschung sind entscheidende Prozesse noch immer nicht verstanden. Denn in diesen Materialien hängen die Eigenschaften der Ladungsträger von vielen subtilen Details ab, und es gibt eine Reihe von Mechanismen, die sie daran hindern, den supraleitenden Zustand einzunehmen. So konkurrieren offenbar auch andere Materialzustände mit der Supraleitung.

Einer dieser Zustände ist die regelmäßige Anordnung der Ladungsträger in streifenförmigen Strukturen auf der Nanoskala. Diese Anordnung macht die Ladungsträger unbeweglich und unterdrückt so die Supraleitung. Bereits im vorigen Jahr konnten Gastforscher mit Hilfe von Experimenten an BESSY II zeigen, dass dieser Mechanismus in einer relevanten Gruppe von Cupraten auftritt und die Supraleitung verhindert [1]. Unter der Führung von zwei Forschergruppen aus Vancouver und Princeton haben internationale Teams diese sogenannte Ladungsordnung nun auch in weiteren Cupraten gefunden und als eine grundlegende Eigenschaft dieser Materialien identifiziert.

Sie nutzten dafür das am HZB entwickelte XUV-Diffraktometer an der UE46_PGM1-Beamline an BESSY II. Mit Synchrotronstrahlung im weichen Röntgenbereich gelang es ihnen, diese schwer nachweisbaren Nanostrukturen in der Ladungsanordnung mit hoher Präzision zu messen und damit wesentlich zum Verständnis dieses Phänomens beizutragen. Dabei arbeiteten sie eng mit Wissenschaftlern der Abteilung Quantenphänomene in neuen Materialien (vormals am Institut Komplexe Magnetische Materialien) am HZB zusammen. Die Ergebnisse wurden jetzt in zwei Artikeln im Fachjournal Science publiziert [2,3]. „Mit der Identifizierung und dem Verständnis der Konkurrenzprozesse zur Supraleitung verbindet sich die Hoffnung, die konkurrierenden Wechselwirkungen gezielt ausschalten zu können und auf diese Weise Supraleitung bei Raumtemperatur zu ermöglichen“, erklärt Dr. Eugen Weschke, der die Messungen an BESSY II betreut hat.


[1] G. Ghiringelli et al., Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x, Science 337, 821 (2012).
[2] Eduardo H. da Silva Neto et al., Ubiquitous Interplay between Charge Ordering and High-Temperature Superconductivity in Cuprates, Science 2013. DOI: 10.1126/science.1243479


[3] R. Comin et al., Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ, Science (2013). DOI: 10.1126/science.1242996

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.