1000. Proteinstruktur an BESSY II entschlüsselt

Der Inhibitor Ex-527 bindet einerseits an das Enzym Sirt 3 (hellgraue Oberfläche), andererseits an acetylierte ADP-Ribose; diese Substanz ist ein Produkt der von Sirt 3 zunächst ausgelösten Deacetylierung. Damit ist das Aktivzentrum des Sirtuins blockiert, so dass weitere Deacetylierungsprozesse gestoppt sind. So hat sich das Sirtuin gleich beim ersten Mal eine Falle gestellt, in der es gefangen bleibt.

Der Inhibitor Ex-527 bindet einerseits an das Enzym Sirt 3 (hellgraue Oberfläche), andererseits an acetylierte ADP-Ribose; diese Substanz ist ein Produkt der von Sirt 3 zunächst ausgelösten Deacetylierung. Damit ist das Aktivzentrum des Sirtuins blockiert, so dass weitere Deacetylierungsprozesse gestoppt sind. So hat sich das Sirtuin gleich beim ersten Mal eine Falle gestellt, in der es gefangen bleibt. © C.Steegborn

Im Juli 2013 wurde die 1000. Proteinstruktur veröffentlicht, die auf bei BESSY gemessenen Daten beruht. Dabei handelt es sich um ein Protein aus der Gruppe der Sirtuine, die bei Alterungs-, Stress- und Stoffwechselprozessen im menschlichen Organismus eine Rolle spielen. Die Wissenschaftler um Prof. Clemens Steegborn von der Universität Bayreuth konnten dabei einen raffinierten Mechanismus entschlüsseln, mit dem ein Wirkstoff die Aktivität eines Sirtuins hemmen kann. Die Ergebnisse wurden in dem renommierten Fachblatt Proceedings of the National Academy of Sciences USA veröffentlicht und könnten Wege zu neuen Tumortherapien aufzeigen.

Bei Proteinen kommt es nicht nur auf ihre Zusammensetzung an, sondern auch darauf an, wie sie gefaltet sind. Erst ihre genaue dreidimensionale Gestalt gibt Aufschluss darüber, welche Aufgaben sie erfüllen und wie sie mit anderen Molekülen wechselwirken können. Diese Gestalt lässt sich mit der Methode der Röntgenstrukturanalyse herausfinden: Allerdings müssen die Protein dazu erst Kristalle bilden. Die Analyse dieser oft winzigen Kriställchen erfordert extrem brillantes Röntgenlicht und besondere Messbedingungen, wie sie seit rund zehn Jahren an den MX-Beamlines an BESSY II zur Verfügung stehen: „Seit 2003 gibt es die drei MX-Beamlines an BESSY II und seither haben Forscher aus aller Welt die Möglichkeit, Proteinkristalle bei uns zu analysieren“, sagt Dr. Uwe Müller, der die MX-Beamlines bei BESSY II aufgebaut hat und diese wissenschaftlich und instrumentell betreut.

Erhebliche Verbesserungen am Messplatz- Rasante Steigerung beim Durchsatz
„In den letzten Jahren haben wir den Messplatz mehrfach erheblich verbessern können, das zeigt sich auch in dem rasant angestiegenen Durchsatz!“ Erst 2010 hatten Forscher der Bayer Healthcare Pharmaceuticals Berlin die 500. Struktur bestimmt, das Protein PIM-1.  „Nur zwei Jahre später, im Mai 2012, wurden von der Steegborn-Gruppe die Daten gemessen, die jetzt zur Veröffentlichung der 1000. Struktur geführt haben“, sagt Dr. Manfred Weiss, der zusammen mit Müller als HZB-Wissenschaftler für die MX-Beamlines verantwortlich ist. Der weitaus überwiegende Teil dieser veröffentlichten Strukturen stammt dabei aus der öffentlich finanzierten Forschung. Zwar nutzen auch Wissenschaftler aus der Industrie die Möglichkeiten an BESSY II, aber die meisten Industriestrukturen erblicken niemals das Licht der Öffentlichkeit. Seit Februar 2013 ermöglicht der neue Detektor PILATUS-6M sogar noch deutlich genauere Einblicke in die komplexen Faltungen der Lebensbausteine. „Für unsere Nutzer ist der PILATUS-Detektor ein weiterer Riesenfortschritt. Aufgrund seiner Größe, seiner Rauschfreiheit und seiner Schnelligkeit ist PILATUS-6M das Beste, was es momentan im Bereich Detektoren für Röntgenkristallographie auf dem Markt gibt.“, sagt Dr. Uwe Müller.

Die 1000. Struktur brachte medizinisch spannende Einblicke
Die Analyse des 1000. Proteins ist auch deshalb ein besonderes Highlight, weil das Ergebnis große Relevanz für die medizinische Forschung haben könnte:  Denn Sirtuine regulieren Stoffwechsel, Stressantworten und Alterungsprozesse im Körper und einige Sirtuine (z.B. Sirt-1 und Sirt-3) spielen auch bei der Krebsentstehung eine Rolle. Ihre Aktivität gezielt mit einem Wirkstoff zu hemmen gilt als interessanter Ansatz für neue Tumortherapien.  Mit ihrer Analyse hat die Forschungsgruppe um Prof. Dr. Clemens Steegborn an der Universität Bayreuth aufklären können, wie die Aktivität von Sirt-1 und Sirt-3 durch das Molekül Ex-527 unterdrückt wird. „Unsere Forschungsergebnisse zeigen, dass Ex-527 ein Inhibitor mit einer ungewöhnlichen und zugleich sehr Sirtuin-spezifischen Wirkungsweise ist“, erklärt Steegborn. „Wenn es mit Hilfe unserer Einsichten gelingt,  gezielt nur die Aktivität eines einzigen Sirtuins zu hemmen, könnte dies ein Ansatz für eine wirksame Therapie mit nur minimalen Nebenwirkungen werden“, hofft Steegborn. Diese Ergebnisse aus der Grundlagenforschung sind daher für die medizinische Forschungen und die Entwicklung von Wirkstoffen hoch interessant.

Feier mit Preisübergabe am 16.10.2013
Am 16. Oktober 2013 werden die Wissenschaftlerinnen und Wissenschaftler der MX-Beamline das Ereignis mit einem Symposium feiern und Clemens Steegborn dabei einen Preis übergeben.


Zur Presseinfo der Uni Bayreuth

Zur Veröffentichung in den PNAS 2013; 8.-12. Juli
DOI: 10.1073/pnas.1303628110

Zusatzinfo für Experten:
Die Struktur ist in der Proteinstrukturdatenbank unter dem Code 4BVH zu finden:

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.