HZB Newsroom

Suchergebnisse - Rubrik: Science Highlight

  • <p>Aus den Messdaten konnte das Team ermitteln, dass die Xenon-Atome zun&auml;chst einlagig die Innenw&auml;nde der Poren auskleiden (Zustand 1), bevor sie sie auff&uuml;llen (Zustand 2). Der R&ouml;ntgenstrahl dringt hier von unten durch die Probe.</p>
    Science Highlight
    21.04.2021
    BESSY II: Ein- und Auswanderung von Gastatomen in nanoporöser Speicherstruktur direkt beobachtet
    Batterieelektroden, Gas-Speicher und einige heterogene Katalysatormaterialien besitzen winzige Poren, die Raum für Atome, Ionen oder Moleküle bieten. Wie genau diese "Gäste" in die Poren einwandern, ist entscheidend für die Funktion solcher Energiematerialien, lässt sich aber meist nur indirekt beobachten. Nun hat ein Team mit dem HZB-ASAXS Instrument an der PTB Röntgen-Beamline von BESSY II mithilfe zweier Röntgenmethoden den Prozess der Einlagerung von Atomen in ein nanoporöses Modellsystem direkt beobachtet. Die Arbeit legt Grundlagen für neue Einblicke in Energiematerialien.

    [...]

  • <p>Das HZB-Team konnte mit zeitaufgel&ouml;sten Mikrowellenmessungen die Photoleitf&auml;higkeit in den d&uuml;nnen Rostschichten bestimmen, hier ein Bild des Messaufbaus.</p>
    Science Highlight
    19.04.2021
    Grüner Wasserstoff: Israelisch-deutsches Team löst das Rätsel um Rost
    Metalloxide wie Rost eignen sich als Photoelektroden, um „grünen“ Wasserstoff mit Sonnenlicht zu erzeugen. Doch trotz jahrzehntelanger Forschung an diesem preisgünstigen Material sind die Fortschritte begrenzt. Ein Team am HZB hat nun gemeinsam mit Partnern von der Ben-Gurion-Universität und dem Technion, Israel, die optoelektronischen Eigenschaften von Rost (Hämatit) und anderen Metalloxiden in bisher nicht gekanntem Detail analysiert. Ihre Ergebnisse zeigen, dass der maximal erreichbare Wirkungsgrad von Hämatit-Elektroden deutlich geringer ist als bisher angenommen. Die Studie gibt darüber hinaus konkrete Hinweise, wie sich neue Materialien für Photoelektroden realistischer bewerten lassen.

    [...]

  • <p>Elektronendichtekarte des antiviral aktivsten Wirkstoffs Calpeptin (gelb), der an die Hauptprotease bindet.</p>
    Science Highlight
    06.04.2021
    Kandidaten für Coronamedikamente an Röntgenlichtquelle von DESY identifiziert
    An der hochbrillanten Röntgenlichtquelle PETRA III von DESY hat ein Team aus über 30 Forschungseinrichtungen mehrere Kandidaten für Wirkstoffe gegen das Coronavirus SARS-CoV-2 identifiziert. Sie binden an ein wichtiges Protein des Virus und könnten damit die Basis für ein Medikament gegen Covid-19 sein. Das MX-Team aus dem HZB hat dabei einen Teil der Messdaten mit speziellen Analyseprogrammen untersucht, um passende Wirkstoffe zu identifizieren. Die Studie erschien jetzt im renommierten Fachjournal Science.

    [...]

  • <p>So k&ouml;nnte der Panzerfisch ausgesehen haben, der vor 380 Millionen Jahren lebte.</p>
    Science Highlight
    31.03.2021
    Tomographie bringt Einblicke in die frühe Evolution der Knochen
    Fast alle Wirbeltiere besitzen Knochen mit eingebetteten Knochenzellen, die über unzählige Nano-Kanälchen miteinander verbunden sind. Doch wann im Lauf der Evolution ist dieses komplexe Netzwerk entstanden und wieso hat es sich weitgehend durchgesetzt? Ein Team von Paläontologen am Museum für Naturkunde Berlin hat nun erstmals in rund 400 Millionen Jahre alten Fossilien von Meereslebewesen solche Strukturen in beispiellos hoher Auflösung analysiert. Um diese Strukturen sichtbar zu machen, hatten Tomographie-Experten am Helmholtz-Zentrum Berlin (HZB) die Proben unter fokussiertem Ionenstrahl im Rasterelektronenmikroskop untersucht und aus den Daten 3D-Abbildungen mit Auflösungen im Nanometerbereich errechnet.

    [...]

  • <p>Das Video zeigt die Ver&auml;nderungen der Kristallstruktur zeigt. Grau: Pb, Braun: Br, Schwarz: C, Blau: N; Wei&szlig;: H</p>
    Science Highlight
    22.03.2021
    Neue Einblicke in die Struktur von organisch-anorganischen Hybrid-Perowskiten
    In der Photovoltaik haben organisch-anorganische Hybrid-Perowskite eine rasante Karriere gemacht. Doch viele Fragen zur kristallinen Struktur dieser überraschend komplexen Materialklasse sind ungeklärt. Nun hat ein Team am HZB mit einer vierdimensionalen Modellierung Strukturdaten von Methylammonium-Bleibromid (MAPbBr3) interpretiert und dabei inkommensurable Überstrukturen und Modulationen der vorherrschenden Struktur identifiziert. Die Studie ist im ACS Journal of Physical Chemistry Letters publiziert und wurde von den Herausgebern als Editor’s Choice ausgewählt.

    [...]

  • <p></p> <p class="Default">Mit einer leitf&auml;higen AFM Spitze wird die Probenoberfl&auml;che einer a-Si:H/c-Si Grenzfl&auml;che unter Ultrahochvakuum auf der nm-Skala abgetastet und so die Tranportkan&auml;le der Ladungstr&auml;ger&nbsp; &uuml;ber Defekte im a-Si:H (rote Zust&auml;nde im vergr&ouml;&szlig;erten Ausschnitt) sichtbar gemacht.</p> <p></p>
    Science Highlight
    17.03.2021
    Solarzellen: Verluste auf der Nanoskala sichtbar gemacht
    Solarzellen aus kristallinem Silizium erreichen Spitzenwirkungsgrade, insbesondere in Verbindung mit selektiven Kontakten aus amorphem Silizium (a-Si:H). Ihre Effizienz wird jedoch durch Verluste in diesen Kontaktschichten begrenzt. Nun hat erstmals ein Team am HZB und der University of Utah, USA, experimentell gezeigt, wie solche Kontaktschichten auf der Nanometerskala Verlustströme generieren und was deren physikalischer Ursprung ist. Mit einem leitfähigen Atom-Kraftmikroskop tasteten sie die Solarzellenoberflächen im Ultrahochvakuum ab, und wiesen winzige, nanometergroße Kanäle für die nachteiligen Dunkelströme nach, die auf Unordnung in der a-Si:H Schicht beruhen.

    [...]

  • <p></p> <p>Mit einem neuen Instrument an BESSY II lassen sich Molybd&auml;n-Sulfid-D&uuml;nnschichten untersuchen, die als Katalysatoren f&uuml;r die solare Wasserstoffproduktion interessant sind. Ein Lichtpuls l&ouml;st einen Phasen&uuml;bergang von der halbleitenden in die metallische Phase aus und verst&auml;rkt so die katalytische Aktivit&auml;t.</p> <p></p>
    Science Highlight
    05.03.2021
    Instrument an BESSY II zeigt, wie Licht MoS2-Dünnschichten katalytisch aktiviert
    Dünnschichten aus Molybdän und Schwefel gehören zu einer Klasse von Materialien, die als (Photo)-Katalysatoren infrage kommen. Solche günstigen Katalysatoren werden gebraucht, um mit Sonnenenergie auch den Brennstoff Wasserstoff zu erzeugen. Allerdings sind sie bislang noch wenig effizient. Ein neues Instrument an BESSY II am Helmholtz-Zentrum Berlin (HZB) zeigt nun, wie ein Lichtpuls die Oberflächeneigenschaften der Dünnschicht verändert und das Material katalytisch aktiviert.

    [...]

  • <p></p> <p>Die Elektronenmikroskopie zeigt die Graphenprobe (grau), in der der Heliumstrahl ein Lochmuster erzeugt hat, so dass die Dichte periodisch variiert. Dadurch kommt es zur &Uuml;berlagerung von Schwingungsmoden und es &ouml;ffnet sich eine mechanische Bandl&uuml;cke. Die Frequenz dieses phononischen Systems l&auml;sst sich durch mechanische Spannung zwischen 50 MHz und 217 MHz einstellen.&nbsp;</p> <p></p>
    Science Highlight
    01.03.2021
    Neue Talente von Graphen: Durchstimmbare Gitterschwingungen
    Technologische Innovationen im letzten Jahrhundert basierten hauptsächlich auf der Kontrolle von Elektronen oder Photonen – im aufstrebenden Forschungsfeld der Phononik geraten nun auch die Schwingungen des Kristallgitters, die Phononen, ins Blickfeld. Ein Team der Freien Universität Berlin und des Helmholtz-Zentrums Berlin hat Graphen mit einem Helium-Ionen-Mikroskop mit einem Lochmuster versehen und dadurch einen phononischen Kristall erzeugt, dessen Resonanzfrequenz sich erstmals in einem breiten Bereich durchstimmen lässt. Dies ist ein echter Durchbruch, der nun im Fachjournal Nano Letters publiziert ist.

    [...]

  • Science Highlight
    24.02.2021
    Beschleunigerphysik: Experiment zeigt neue Optionen für Synchrotronlicht-Quellen auf
    Ein internationales Team hat mit einem aufsehenerregenden Experiment gezeigt, wie vielfältig die Möglichkeiten von Synchrotronlicht-Quellen sind. Beschleunigerexperten des Helmholtz-Zentrums Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Tsinghua Universität in Peking haben an der Metrology Light Source der PTB Elektronenpakete mit einem Laser so manipuliert, dass diese intensive Lichtpulse mit einer laserartigen Qualität emittierten. Mit dieser Methode wären spezialisierte Synchrotronstrahlungs-Quellen potenziell in der Lage, eine Lücke im Arsenal verfügbarer Lichtquellen zu füllen und die Voraussetzung für industrielle Anwendungen zu bieten. Die Arbeit wurde am 24. Februar 2021 in der führenden Wissenschaftspublikation „Nature“ veröffentlicht.

    [...]

  • <p>Die &bdquo;Tinte&ldquo; aus Perowskit-Vorstufe, L&ouml;sungsmittel und Zusatzstoff kommt aus einer schlitzf&ouml;rmigen D&uuml;se und beschichtet das darunter entlangfahrende Glassubstrat.</p>
    Science Highlight
    22.02.2021
    Wie das Salz in der Suppe: Die perfekte Mischung für effiziente Perowskit-Solarzellen
    Solarzellen, die das Sonnenlicht so effizient wie Silizium in elektrische Energie umwandeln, sich dabei aber einfach und aus kostengünstigen Materialien herstellen lassen – für Materialforscher ist das ein langgehegter Traum. Dem sind Wissenschaftler des Helmholtz-Zentrums Berlin nun ein Stück nähergekommen. Sie haben ein Verfahren verbessert, mit dem sich günstige Perowskit-Schichten einfach aus Lösungen auf Trägermaterien aufbringen lassen. Dabei haben sie nicht nur entdeckt, welch entscheidende Rolle eines der verwendeten Lösungsmittel spielt, sondern auch die Lagerfähigkeit der Materialtinten genauer unter die Lupe genommen.

    [...]

  • Science Highlight
    10.02.2021
    Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
    Einem deutsch-polnischen Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen zu erzeugen. Mithilfe des Rasterröntgenmikroskops MAXYMUS an Bessy II am Helmholtz Zentrum Berlin konnten sie die periodische Magnetisierungsstruktur in einem Kristall sogar filmen. Dieses weltweit erste Video eines Raum-Zeit-Kristalls bei Raumtemperatur sowie das Forschungsprojekt an sich stellten die Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart, der Adam Mickiewicz University und der Polish Academy of Sciences in Poznań in Physical Review Letters vor.

    [...]

  • <p>Die elektronische Struktur komplexer Molek&uuml;le kann aus RIXS-Daten an BESSY II errechnet werden.</p>
    Science Highlight
    28.01.2021
    Blackbox-Verfahren für superschnelle Ergebnisse
    Die elektronische Struktur von komplexen Molekülen und ihre chemische Reaktivität können mit Hilfe der Methode der resonanten inelastischen Röntgenstreuung (RIXS) an BESSY II untersucht werden. Allerdings erfordert die Auswertung von RIXS-Daten bisher sehr lange Rechenzeiten. Ein Team an BESSY II hat nun ein neues Simulationsverfahren entwickelt, das diese Auswertung stark beschleunigt. Die Ergebnisse können sogar während des Experiments berechnet werden. Messgäste können das Verfahren wie eine Blackbox nutzen.

    [...]

  • <p>TEM-Aufnahme einer &alpha;-SnWO<sub>4 </sub>D&uuml;nnschicht (pink), die mit 20 nm NiO<sub>x</sub> (gr&uuml;n) beschichtet wurde. An der Grenzfl&auml;che bildet sich eine weitere extrem d&uuml;nne Schicht.</p>
    Science Highlight
    26.01.2021
    Solarer Wasserstoff: Photoanoden aus α-SnWO4 versprechen hohe Wirkungsgrade
    Photoanoden aus Metalloxiden gelten als praktikable Lösung für die Erzeugung von Wasserstoff mit Sonnenlicht. So besitzt α-SnWO4 optimale elektronische Eigenschaften für die photoelektrochemische Wasserspaltung, korrodiert jedoch rasch. Schutzschichten aus Nickeloxid können die Korrosion verhindern, reduzieren jedoch die Photospannung und damit den Wirkungsgrad. Nun hat ein Team am HZB an der Synchrotronquelle BESSY II untersucht, was an der Grenzfläche zwischen der Photoanode und der Schutzschicht genau passiert. Kombiniert mit theoretischen Methoden deuten die Messdaten darauf hin, dass sich dort eine Oxidschicht bildet, die den Wirkungsgrad der Photoanode beeinträchtigt.

    [...]

  • <p>Die Verteilung der Phononen ist zun&auml;chst komplex (obere Kurven) und vereinfacht sich mit der Zeit zu einer Gausschen Glockenkurve (untere Kurve).</p>
    Science Highlight
    25.01.2021
    Wie sich komplexe Schwingungen in einem Quantensystem mit der Zeit vereinfachen
    Mit einem raffinierten Experiment haben Physiker gezeigt, dass sich in einem eindimensionalen Quantensystem die zunächst komplexe Verteilung von Schwingungen oder Phononen mit der Zeit in eine einfache Gaußsche Glockenkurve verwandeln kann. Das Experiment fand an der Technischen Universität Wien statt, während die theoretischen Überlegungen von einer gemeinsamen Forschergruppe der Freien Universität Berlin und des HZB durchgeführt wurden.

    [...]

  • <p>Die Illustration zeigt schematisch den Aufbau der Tandemsolarzelle.</p>
    Science Highlight
    11.12.2020
    Perowskit/Silizium Tandemsolarzellen an der Schwelle zu 30 % Wirkungsgrad
    In Science berichtet ein HZB-Team, wie es den aktuellen Weltrekord von 29,15 % in einer Tandemsolarzelle aus Silizium und Perowskit erreichen konnte. Die Tandemzelle zeigt selbst ohne Verkapselung über 300 Stunden eine stabile Leistung. Die Gruppe um Steve Albrecht hat dafür physikalische Prozesse an den Grenzflächen untersucht und gezielt den Ladungsträgertransport verbessert. [...]
  • <p>Schematische Darstellung: Aus der Tinte bildet sich &uuml;ber Zwischenphasen eine polykristalline Perowskit-D&uuml;nnschicht.</p>
    Science Highlight
    27.11.2020
    Perowskit-Solarzellen: Auf dem Weg zum gezieltem Design von Tinten für die industrielle Fertigung
    Für die Herstellung von hochwertigen Perowskit-Dünnfilmen für großflächige Photovoltaikmodule werden oft optimierte „Tinten“ verwendet, die eine Mischung von Lösungsmitteln enthalten. Ein HZB-Team hat nun an BESSY II analysiert, wie die Kristallisationsprozesse in solchen Mischungen ablaufen. Mit einem neu entwickelten Modell ist es zudem nun möglich, die Kinetik der Kristallisationsprozesse für verschiedene Lösungsmittelgemische vorab zu bewerten. Dies ist hilfreich für die Produktion von Perowskit-Modulen im industriellen Maßstab.

    [...]

  • <p>Das w&auml;hrend des Ladevorgangs aufgenommene Tomogramm zeigt die ortsaufgel&ouml;sten Ver&auml;nderungen der Graphit-Elektrodendicke einer wiederaufladbaren Aluminium-Ionen-Batterie im entladenen und geladenen Zustand.</p> <p></p>
    Science Highlight
    20.11.2020
    Nutzerforschung an BESSY II: Graphitelektroden für wiederaufladbare Batterien untersucht
    Wiederaufladbare Graphit-Dual-Ionen-Batterien sind preisgünstig und leistungsstark. Ein Team von der Technischen Universität Berlin hat an der EDDI Beamline von BESSY II untersucht, wie sich während des Zyklierens (operando) die Morphologie der Graphit-Elektroden reversibel verändert. Die 3D-Röntgentomographieaufnahmen kombiniert mit simultaner Diffraktion erlauben nun eine präzise Auswertung der Prozesse, insbesondere von Volumenveränderungen der Elektroden. Dies kann dazu beitragen, Graphitelektroden weiter zu optimieren.

    [...]

  • <p>Mit der Zeit ver&auml;ndert sich der lokale pH-Wert (hier in einem Elektrolyten mit 0.5 M K<sub>2</sub>SO<sub>4</sub>).</p>
    Science Highlight
    19.11.2020
    Grüner Wasserstoff: Auftrieb im Elektrolyten sorgt für Konvektionsströmung
    Wasserstoff lässt sich klimaneutral mit Sonnenlicht produzieren. Aber auf dem Weg vom Labormaßstab zu einer großtechnischen Umsetzung gibt es noch Hürden. Nun hat ein Team am HZB eine Methode vorgestellt, um Strömungsprozesse im Elektrolyten sichtbar zu machen und mit einem Modell vorab zuverlässig zu simulieren. Die Ergebnisse sind hilfreich, um Design und Aufskalierung dieser Technologie zu unterstützen und wurden in der renommierten Zeitschrift Energy and Environmental Science veröffentlicht.

    [...]

  • <p>Neun Proben mit unterschiedlicher Zusammensetzung: von reinem CsPbBr<sub>2</sub>I (Tinte 1, links) bis zu reinem CsPbI<sub>3</sub> (Tinte 2 rechts).</p>
    Science Highlight
    16.11.2020
    Solarenergie: Cäsium-basierte anorganische Halogenid-Perowskite kartiert
    Forscherinnen und Forscher am HZB haben verschiedene Zusammensetzungen von Cäsium-basierten Halogenidperowskiten (CsPb(BrxI1-x)3 (0 ≤ x ≤ 1)) gedruckt und untersucht. In einem Temperaturbereich zwischen Raumtemperatur und 300 Celsius beobachten sie strukturelle Phasenübergänge, die die elektronischen Eigenschaften beeinflussen. Die Studie bietet eine schnelle und einfache Methode zur Bewertung neuer Zusammensetzungen von Perowskitmaterialien, um Kandidaten für Anwendungen in Dünnschichtsolarzellen und optoelektronischen Bauelementen zu identifizieren.

    [...]

  • <p>Die Fermioberfl&auml;che eines GeTe-Kristalls (111) konnte an BESSY II experimentell ermittelt werden.</p>
    Science Highlight
    05.11.2020
    Informationstechnologie: Besonderheiten von Germaniumtellurid auf der Nanoskala aufgedeckt
    Germanium-Tellurid (GeTe) ist ein interessantes Material für die Spintronik. Nun hat ein deutsch-russisches Team an BESSY II gezeigt, wie sich die Spintextur in GeTe-Einkristallen durch ferroelektrische Polarisation innerhalb einzelner Nanodomänen umschalten lässt.

      [...]

  • <p>Auf Basis der Messdaten errechnetes Strukturmodell von hochpor&ouml;sem a-Si:H, das sehr rasch abgeschieden wurde. Dicht geordnete Dom&auml;nen (DOD) sind blau und Hohlr&auml;ume rot gezeichnet. Die graue Schicht stellt die ungeordnete a-Si:H-Matrix dar. Die runden Ausschnitte zeigen die Nanostrukturen vergr&ouml;&szlig;ert bis zur atomaren Aufl&ouml;sung (unten, Si-Atome: grau, Si-Atome an den Oberfl&auml;chen der Leerr&auml;ume: rot; H: wei&szlig;)</p>
    Science Highlight
    29.10.2020
    Ordnung in der Unordnung: Dichtefluktuationen in amorphem Silizium entdeckt
    Erstmals hat ein Team am HZB mit Röntgen- und Neutronenstreuung an BESSY II und BER II in amorphem Silizium mit einer Auflösung von 0.8 Nanometern atomare Substrukturen identifiziert. Solche a-Si:H-Dünnschichten werden bereits seit Jahrzehnten in Solarzellen, TFT-Displays und Detektoren eingesetzt. Die Ergebnisse zeigen, dass sich drei unterschiedliche Phasen innerhalb der amorphen Matrix bilden, die Qualität und Lebensdauer der Halbleiterschicht dramatisch beeinflussen. Die Arbeit wird auf dem Titel der aktuellen Ausgabe von Physical Review Letters hervorgehoben.

    [...]

  • <p>Ultrakalte Atome in einem optischen Gitter z&auml;hlen zu den betrachteten Quantensystemen.</p>
    Science Highlight
    27.10.2020
    Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen
    Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und zwar mithilfe von komplexen Festkörpersystemen, die experimentell untersucht werden können. Die Studie wurde in der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht. [...]
  • <p>Skalierbare gro&szlig;fl&auml;chige BiVO<sub>4</sub>-Photoanode auf FTO mit Ni-Stromabnehmern.</p>
    Science Highlight
    26.10.2020
    Solarer Wasserstoff: Maß für die Stabilität von Photoelektroden
    Sonnenenergie kann zur Herstellung von Wasserstoff, einem vielseitigen Brennstoff, genutzt werden. Um dies durch elektrolytische Wasserspaltung zu erreichen, werden hochwertige Photoelektroden benötigt. Leider neigen die bekannten Materialien dazu, während des Prozesses zu korrodieren. Nun hat ein Team am HZB in internationaler Zusammenarbeit die Korrosionsprozesse von hochwertigen BiVO4-Photoelektroden untersucht. Sie beobachteten die Prozesse "in operando" (bei der elektrolytischen Wasserspaltung) während der Sauerstoff-Entwicklungsreaktion (OER). Diese Arbeit zeigt, wie die Stabilität von Photoelektroden und Katalysatoren verglichen und so auch verbessert werden kann. [...]
  • <p>(a,b) Kryo-Elektronenmikroskopie des 2D-Gitters sowie das Beugungsmuster eines Ausschnitts. (c-e) Die Vergr&ouml;&szlig;erung zeigt das 2D Pascal-Dreiecksmuster, mit den eingef&uuml;gten Protein-Molek&uuml;len.</p> <p></p>
    Science Highlight
    15.10.2020
    Nanomuster aus Protein-Molekülen unter dem Kryo-Elektronenmikroskop
    Ein Team vom Helmholtz-Zentrum Berlin (HZB) konnte mit Kryo-Elektronenmikroskopie in einer Probe aus Proteinen regelmäßige, zweidimensionale Strukturen in der Form von Pascal-Dreiecken nachweisen. Die Proben wurden in einem Labor von chinesischen Kooperationspartnern synthetisiert. Die Methode hat Potenzial, um auch Energiematerialien neu zu entdecken.

    [...]

  • <p>Dr. Michael Tovar am FALCON-Instrument der BER II Neutronenquelle.</p>
    Science Highlight
    12.10.2020
    Perowskit-Materialien: Neutronen zeigen Zwillingsbildung in Halid-Perowskiten
    Solarzellen auf Basis von hybriden Halid-Perowskiten erreichen hohe Wirkungsgrade. Diese gemischt organisch-anorganischen Halbleiter werden in der Regel als dünne Filme aus Mikrokristallen produziert. Eine Untersuchung mit der Laue-Kamera an der Neutronenquelle BER II konnte nun aufklären, dass es beim Auskristallisieren auch bei Raumtemperatur zur Zwillingsbildung kommt. Dieser Einblick ist hilfreich, um Herstellungsverfahren von Halid-Perowskiten zu optimieren. 

    [...]

  • <p>Abbildung einer gro&szlig;fl&auml;chigen Silizium-Perowskit-Tandemsolarzelle</p>
    Science Highlight
    07.09.2020
    Silizium-Perowskit-Tandemsolarzellen: Neue Anlagen ebnen den Weg zu einer industrienahen Produktion

    Perowskite gelten als aussichtsreiche Materialien für Solarzellen, die zugleich kostengünstig herstellbar und sehr effizient sind. Sie eignen sich vor allem für Tandem-Solarzellen, die Zellen aus Silizium und Perowskit miteinander kombinieren. Dadurch wird das Sonnenlicht besonders umfassend zur Gewinnung von elektrischer Energie genutzt. Bislang lassen sich die Vorteile solcher Zellen nur in kleinem Maßstab im Labor nutzen. Mit zwei neuen hochinnovativen Fertigungsanlagen schaffen Forscher am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) nun die Grundlage für eine künftige Produktion im industriellen Maßstab.  [...]

  • <p>Periodische Metaoberfl&auml;chen (grau) k&ouml;nnen die Photon Aufkonvertierung durch Nanoteilchen (gelb) um mehr als drei Gr&ouml;&szlig;enordnungen steigern.</p>
    Science Highlight
    04.09.2020
    „Upconversion“ von Photonen bei schwacher Lichtintensität – der Schlüssel zu neuen Anwendungen in Energie- und Biotechnik
    Durch Umwandlung von energiearmen in energiereiche Photonen lässt sich der nutzbare Bereich des Lichtspektrums deutlich erweitern. Doch bisher gelang das nur bei hoher Lichtintensität. Durch die Kombination bestimmter Nanopartikel mit einer sogenannten Metaoberfläche konnten Wissenschaftler des HZB und der Bundesanstalt für Materialforschung und -prüfung (BAM) den Effekt erstmals auch für relativ schwaches Licht nutzbar machen. Das ebnet den Weg für künftige Anwendungen in der Photovoltaik, zum Nachweis biologischer Substanzen oder als Messfühler für elektrische Felder. [...]
  • <p>Struktur vom TUB75: die gesamte MOF-Architektur (oben) und ihre leitf&auml;hige anorganische Baueinheit (unten)</p>
    Science Highlight
    26.08.2020
    Molekulare Architektur: Neue Materialklasse für Energiespeicher von morgen
    Forscher der Technischen Universität Berlin haben eine neue Familie von Halbleitern geschaffen, die vom Helmholtz-Zentrum Berlin (HZB) auf ihre Eigenschaften hin untersucht wurde. Den ersten Vertreter tauften sie auf den Namen TUB75. Das Material gehört zur Klasse der Metallorganischen Frameworks, kurz MOFs. Es könnte neue Perspektiven für die Energiespeicherung eröffnen. Die Arbeit wurde in Advanced Materials publiziert. [...]
  • <p></p> <p>Daniel Abou-Ras und sein Team ermitteln die mikroskopische Struktur einer sehr guten CIGS-D&uuml;nnschicht-Solarzelle (oben). Sie dient als Vorbild f&uuml;r eine Computersimulation (unten)</p>
    Science Highlight
    21.08.2020
    Forscherteam liefert konkreten Ansatzpunkt, um die Leistung von CIGS-Solarzellen zu verbessern
    Ein Forscherteam hat mithilfe von Elektronenmikroskopen und Computersimulationen ermittelt, warum es zu Verlusten in Dünnschichtsolarzellen kommt. Die Forschenden von der Martin-Luther-Universität Halle-Wittenberg, vom Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) und vom Helmholtz-Zentrum Berlin (HZB) geben konkrete Hinweise, wie sich der bereits hohe Wirkungsgrad von CIGS-Solarzellen verbessern lässt. Die Ergebnisse wurde in der Zeitschrift Nature Communication veröffentlicht. [...]
  • <p>Intelligente mathematische Werkzeuge f&uuml;r die Simulation von Spin-Systemen reduzieren die ben&ouml;tigte Rechenzeit auf Supercomputern. Einige der schnellsten Supercomputer der Welt (hier JUWELS) stehen aktuell im Forschungszentrum J&uuml;lich.</p> <p></p>
    Science Highlight
    14.08.2020
    Mathematisches Werkzeug hilft, Quantenmaterialien rascher zu berechnen
    Viele Quantenmaterialien lassen sich bislang kaum rechnerisch simulieren, weil die benötigte Rechenzeit zu groß wäre. Nun hat eine gemeinsame Forschergruppe an der Freien Universität Berlin und am Helmholtz-Zentrum Berlin (HZB) einen Weg aufgezeigt, wie sich die Rechenzeiten deutlich verkürzen lassen. Dies könnte die Entwicklung von Materialien für künftige energieeffiziente IT-Technologie beschleunigen.

    [...]

  • <p>Durch das Be- und Entladen &auml;ndert sich die Struktur kristalliner Silizium-Elektroden in ein schachbrettartiges Bruchmuster. Am HZB wurde nun beobachtet, dass diese Defekte beim be- und entladen nicht gr&ouml;&szlig;er werden sondern in ihrem Muster bestehen bleiben.</p>
    Science Highlight
    29.07.2020
    Hoffnung auf bessere Batterien – Forscher verfolgen live das Laden und Entladen von Silizium-Elektroden
    Silizium als Werkstoff für Elektroden in Lithium-Ionen-Batterien verspricht eine deutliche Steigerung von deren Kapazität. Das Manko dieses Materials: Durch die Belastung beim Be- und Entladen wird es leicht beschädigt. Wissenschaftlern am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) ist es nun zum ersten Mal gelungen, diesen Prozess direkt und detailliert an kristallinen Silizium-Elektroden zu beobachten. Operando-Experimente am Speicherring BESSY II lieferten neue Erkenntnisse darüber, wie Brüche im Silizium entstehen – und wie sich das Material dennoch vorteilhaft einsetzen lässt. [...]
  • <p>F&uuml;r die Studie wurde u.a. das Enzym Endothiapepsin (grau) mit Molek&uuml;lenaus der Fragmentibliothek in Kontakt gebracht. Die Analysen zeigen nun,dass zahlreiche Substanzen (blaue und orange Molek&uuml;le) an das Enzym&nbsp;andocken.Jede gefundene Substanz ist einpotentieller Startpunkt f&uuml;r die Entwicklung gr&ouml;&szlig;erer Molek&uuml;le.</p>
    Science Highlight
    13.07.2020
    Neue Molekülbibliothek für systematische Suche nach Wirkstoffen
    Um die systematische Entwicklung von Medikamenten zu beschleunigen, hat das MX-Team am Helmholtz-Zentrum Berlin (HZB) mit der Drug Design Gruppe der Universität Marburg eine neue Substanzbibliothek aufgebaut. Sie besteht aus 1103 organischen Molekülen, die als Bausteine von neuen Wirkstoffen infrage kommen. Das MX-Team hat diese Bibliothek nun in Kooperation mit der FragMAX-Gruppe am MAX IV validiert. Die Substanzbibliothek des HZB steht weltweit für die Forschung zur Verfügung und spielt auch bei der Suche nach Wirkstoffen gegen SARS-CoV-2 eine Rolle.

    [...]

  • <p>So lief das Experiment ab: Zwei Laserpulse treffen in kurzem zeitlichen Abstand auf den D&uuml;nnfilm aus Eisen-Platin-Nanok&ouml;rnchen auf: Der erste Laserpuls zerst&ouml;rt die Spinordnung, w&auml;hrend der zweite Laserpuls die nun unmagnetisierte Probe anregt. Ein R&ouml;ntgenpuls ermittelt im Anschluss, wie sich das Gitter ausdehnt oder kontrahiert.</p>
    Science Highlight
    10.07.2020
    Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie
    Die neueste Generation von magnetischen Festplattenlaufwerken besteht aus magnetischen Dünnschichten, die zu den Invar-Materialien zählen und eine extrem robuste und hohe Datenspeicherdichte ermöglichen. Ein technologisch relevantes Material für solche HAMR-Datenspeicher sind Dünnschichten aus Eisen-Platin-Nanokörnern. Ein internationales Team um die gemeinsame Forschungsgruppe von Prof. Dr. Matias Bargheer am HZB und der Uni Potsdam hat nun erstmals experimentell beobachtet, wie in diesen Eisen-Platin-Dünnschichten eine besondere Spin-Gitter-Wechselwirkung die Wärmeausdehnung des Kristallgitters aufhebt. Die Arbeit ist in Science Advances publiziert.

    [...]

  • <p>In der Quantenphysik werden Atome, Molek&uuml;le oder Lichtquanten genutzt, um Informationen zu speichern.</p>
    Science Highlight
    20.06.2020
    Vergleichsanalyse für Quantentechnologien
    Macht ein Gerät das, was es soll? Nicht nur im Alltag stellt man sich diese Frage. Auch Forscher, die sich mit Quantentechnologien beschäftigen, wollen wissen, was neuartige Instrumente können. Ein Team um Prof. Jens Eisert, Physiker am Dahlem Center for Complex Quantum Systems der Freien Universität Berlin und am Helmholtz-Zentrum Berlin haben zusammen mit Forschern der Pariser Universität Sorbonne einen Überblick über die vielfältigen Werkzeuge veröffentlicht, mit denen man derzeit Quantengeräte vergleichen und zertifizieren kann. Der Review-Artikel ist in Nature Reviews Physics erschienen. [...]
  • <p>Grafische Darstellung des Druckprozesses f&uuml;r die Perowskit-LED.</p>
    Science Highlight
    12.06.2020
    Perowskit-LED aus dem Drucker – auf dem Weg zu einem neuen Standard für die Elektronik
    Einem Team von Forschern des HZB und der Humboldt-Universität zu Berlin ist es zum ersten Mal gelungen, Leuchtdioden (LEDs) aus einem hybriden Perowskit-Halbleitermaterial per Tintenstrahldruck herzustellen. Das Tor zu einer breiten Anwendung solcher Materialien in vielerlei elektronischen Bauelementen ist damit geöffnet. Der Durchbruch gelang den Wissenschaftlern mithilfe eines Tricks: dem „Impfen“ der Oberfläche mit bestimmen Kristallen.

    [...]

  • <p>Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten Cu<sub>x</sub>O<sub>y</sub>-Struktur.</p>
    Science Highlight
    10.06.2020
    Nutzerforschung an BESSY II: Bildung eines 2D metastabilen Oxids in reaktiven Umgebungen

    In vielen Anwendungen der Katalyse, bei chemischen Sensoren, Brennstoffzellen und Elektroden spielt das chemische Verhalten von Festkörperoberflächen eine wichtige Rolle. Ein Forscherteam des Max-Planck-Instituts für chemische Energiekonversion hat an der Synchrotronstrahlungsquelle BESSY II nun ein wichtiges Phänomen beschrieben, das auftreten kann, wenn Metalllegierungen reaktiven Umgebungen ausgesetzt werden.   [...]

  • <p>Die Publikation hat es auf den Titel der aktuellen Ausgabe der SCIENCE geschafft.</p>
    Science Highlight
    05.06.2020
    BESSY II: Experiment zeigt erstmals im Detail, wie Elektrolyte metallisch werden
    Ein internationales Team hat erstmals an BESSY II ein raffiniertes Experiment entwickelt, um die Bildung eines metallischen Leitungsbandes in Elektrolyten zu beobachten. Dafür stellten sie kryogene Lösungen aus flüssigem Ammoniak mit verschiedenen Konzentrationen von Alkali-Metallen her und untersuchten den Flüssigkeitsstrahl mit weichem Röntgenlicht. Äußerlich zeigt sich der Übergang von einzelnen Metall-Atomen in Lösung zu einem metallischen Verbund, indem die Farbe der Lösung von blau zu golden wechselt. Diesen Vorgang konnten sie nun durch die Messdaten an BESSY II im Detail analysieren. Die Arbeit ist in Science publiziert und erscheint sogar als Titelgeschichte. [...]
  • <p>Perowskit-Oxide zeichnen sich durch die Summenformel ABO<sub>3</sub> aus, wobei die Elemente A (gr&uuml;n) und B (blau) auf bestimmten Gitterpl&auml;tzen sitzen und von Sauerstoff-Atomen (rot) umgeben sind.</p>
    Science Highlight
    02.06.2020
    Katalysatoren: Effiziente Wasserstoffgewinnung mit Struktur
    Regenerativ erzeugter Wasserstoff gilt als ökologischer Rohstoff der Zukunft. Um ihn durch Elektrolyse effizient aus Wasser herzustellen, setzt die Forschung heute auch auf Perowskit-Oxide. Das Fachmagazin Journal of Physics: Energy hat Dr. Marcel Risch vom Helmholtz-Zentrum Berlin (HZB) eingeladen, den aktuellen Stand der Forschung zu skizzieren. [...]
  • <p>Die Abbildung zeigt die Ver&auml;nderungen in der Struktur von FASnI3:PEACl-Filmen w&auml;hrend der Behandlung bei verschiedenen Temperaturen.</p>
    Science Highlight
    11.05.2020
    Auf dem Weg zu bleifreien und stabilen Perowskit-Solarzellen
    Die besten Perowskit-Solarzellen schaffen zwar enorme Wirkungsgrade, enthalten aber giftiges Blei. Bleifreie Perowskit-Solarzellen erreichten bislang nur geringe Wirkungsgrade, die zudem schnell abnehmen. Eine neue Arbeit einer internationalen Kooperation zeigt nun, wie sich stabile Perowskit-Schichten herstellen lassen, die Zinn anstelle von Blei enthalten. Dabei schützen organische Verbindungen das Zinn vor Oxidation und sorgen für Stabilität. [...]
  • <p>Zwei der vier magnetischen Wechselwirkungen bilden ein neues dreidimensionales Netz aus Dreiecken mit gemeinsamen Ecken, das als Hyper-Hyperkagome-Gitter bekannt ist und zu dem Quanten-Spin-Fl&uuml;ssigkeitsverhalten in PbCuTe<sub>2</sub>O<sub>6</sub> f&uuml;hrt.</p>
    Science Highlight
    11.05.2020
    Zukünftige Informationstechnologien: Dreidimensionale Quanten-Spin-Flüssigkeit entdeckt
    Quanten-Spin-Flüssigkeiten sind Kandidaten für den Einsatz in zukünftigen Informationstechnologien. Bisher sind Quanten-Spin-Flüssigkeiten meist nur in ein- oder zweidimensionalen magnetischen Systemen zu finden. Nun hat eine internationale Kooperation unter der Leitung eines HZB-Teams Kristalle aus PbCuTe2O6 mit Neutronenexperimenten untersucht. Sie fanden Spin-Flüssigkeits-Verhalten in drei Dimensionen, bedingt durch ein sogenanntes Hyper-Hyperkagome-Gitter. Die experimentellen Daten passen sehr gut zu theoretischen Simulationen, die am HZB durchgeführt wurden. [...]
  • <p>Innerhalb der 3D-Struktur eines Phytochrom-Molek&uuml;ls zeigt sich ein Bilin-Pigment, das das Photon aufnimmt und sich dadurch verdreht, was ein Signal ausl&ouml;st.</p>
    Science Highlight
    07.05.2020
    Nutzerforschung an BESSY II: Einblick in das Auge der Pflanzen
    Pflanzen nutzen Licht nicht nur für die Photosynthese. Die Pflanzenzelle hat zwar keine Augen, kann aber dennoch Licht wahrnehmen und damit ihr Umfeld. Dabei spielen Phytochrome, bestimmte türkisfarbige Proteine, die zentrale Rolle. Wie genau sie funktionieren, ist noch unklar. Nun konnte das Team um den Pflanzenphysiologen Jon Hughes (Justus-Liebig-Universität Gießen) an BESSY II die dreidimensionale Architektur von verschiedenen pflanzlichen Phytochrom-Molekülen entschlüsseln. Dabei zeigt sich, wie Licht die Struktur des Phytochroms verändert, so dass die Zelle das Lichtsignal weiterleitet, um die Entwicklung der Pflanze entsprechend zu steuern. [...]
  • <p>Das Material besteht aus Nafion mit eingebetten Nanopartikeln.</p>
    Science Highlight
    04.05.2020
    Nutzerforschung an BESSY II: Neue Materialien steigern die Effizienz in Ethanol-Brennstoffzellen
    Eine Gruppe aus Brasilien hat mit einem HZB-Team eine neuartige Kompositmembran für Ethanol-Brennstoffzellen untersucht. Sie besteht aus dem Polymer Nafion, in das durch Schmelzextrusion Titanat-Nanopartikel eingebettet sind. An BESSY II konnten sie beobachten, wie die Nanopartikel in der Nafion-Matrix verteilt sind und wie sie die Protonenleitfähigkeit steigern. [...]
  • <p>Ein geb&uuml;ndelter weicher R&ouml;ntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern schreibt zahlreiche Magnetwirbel, die zusammen en Begriff &bdquo;MPI-IS&ldquo; ergeben.</p>
    Science Highlight
    23.04.2020
    Neue Wechselwirkung zwischen Licht und Materie an BESSY II entdeckt
    Ein deutsch-chinesisches Team um Gisela Schütz vom MPI für Intelligente Systeme hat an BESSY II eine neue Wechselwirkung zwischen Licht und Materie entdeckt. Es gelang ihnen damit, nanometerfeine magnetische Wirbel in einer magnetischen Schicht zu erzeugen. Dabei handelt es sich um so genannte Skyrmionen, die für künftige Informationstechnologien interessant sind. [...]
  • <p>Die CIGS-Pero-Tandemzelle wurde in einer typischen Laborgr&ouml;&szlig;e von einem Quadratzentimeter realisiert.</p>
    Science Highlight
    14.04.2020
    Tandemsolarzellen-Weltrekorde: Neuer Zweig im NREL-Chart
    Eigens für eine Entwicklung aus dem HZB gibt es nun in der Grafik für Solarzellen-Weltrekorde einen neuen Zweig. Die neue Weltrekord-Zelle besteht aus den Halbleitern Perowskit und CIGS, die zu einer monolithischen „zwei-Terminal“-Tandemzelle verschaltet sind. Aufgrund der verwendeten Dünnschichttechnologien überleben solche Tandemzellen im Weltall deutlich länger und können sogar auf biegsamen Folien produziert werden. Die neue Tandemzelle erreicht einen zertifizierten Wirkungsgrad von 24,16 Prozent. [...]
  • <p>In HoAgGe besetzten Holmium-Spins die Ecken von Dreiecken, die zu einem Kagome-Muster geordnet sind. Die Ausrichtung benachbarter Spins (links, rote Pfeile) muss dabei der Eisregel gehorchen: Entweder ragen zwei Spins in ein Dreieck hinein und eins hinaus oder umgekehrt. Als Resultat verhalten sich die einzelnen Dreiecke, als w&auml;ren sie magnetische Monopole (rechts).</p>
    Science Highlight
    07.04.2020
    Neutronenforschung: Magnetische Monopole in Kagome-Spin-Eis-Systemen nachgewiesen
    Magnetische Monopole sind eigentlich unmöglich. Bei tiefen Temperaturen können sich jedoch in bestimmten Kristallen so genannte Quasiteilchen zeigen, die sich wie magnetische Monopole verhalten. Nun hat eine internationale Kooperation nachgewiesen, dass solche Monopole auch in einem Kagome-Spin-Eis-System auftreten. Ausschlaggebend waren unter anderem auch Messungen mit inelastischer Neutronenstreuung am Instrument NEAT der Berliner Neutronenquelle BER II*. Die Ergebnisse sind in der Fachzeitschrift Science erschienen. [...]
  • <p class="western">Im Grundzustand sind die magnetischen Momente entweder auf- oder abw&auml;rts gerichtet, die zum &auml;u&szlig;eren Magnetfeld antiparallelen Spins (rot) sind nie zusammen (rechts). Durch Anregung k&ouml;nnen sich weitere Spins antiparallel ausrichten und Bethe-Ketten entstehen (wei&szlig;e Spins, links).</p>
    Science Highlight
    06.04.2020
    Festkörperphysik: Vorhersage der Quantenphysik experimentell nachgewiesen
    Vor 90 Jahren postulierte der Physiker Hans Bethe, dass in bestimmten magnetischen Festkörpern ungewöhnliche Muster auftreten. Nun ist es einem internationalen Team gelungen, solche Bethe-Strings erstmals experimentell nachzuweisen. Sie führten Neutronenstreuexperimente an verschiedenen Neutronenquellen durch, darunter auch Messungen am einzigartigen Hochfeldmagneten des BER II* am HZB. Die experimentellen Daten sind in hervorragender Übereinstimmung mit der theoretischen Vorhersage von Bethe und beweisen einmal mehr die Leistungsfähigkeit der Quantenphysik. [...]
  • <p>Dieses Bild zeigt ein R&ouml;ntgenbild des Elektronenstrahls im TRIB-Modus, bei dem zwei Bahnen koexistieren: die regul&auml;re Bahn und die zweite, die sich um diese Bahn windet und sich erst nach drei Umdrehungen schlie&szlig;t.</p>
    Science Highlight
    01.04.2020
    BESSY II: Millionenfach schnellerer Wechsel von zirkular polarisierten Lichtpulsen
    Ein Team aus Beschleunigerphysikern, Undulatorexperten und Experimentatoren hat am Speicherring BESSY II gezeigt, wie sich die Händigkeit (Helizität) von zirkular polarisierter Synchrotronstrahlung schneller umschalten lässt – und zwar bis zu einer Million Mal schneller als bisher. Sie nutzten dazu einen am HZB entwickelten elliptischen Doppel-Undulator und betrieben den Speicherring im sogenannten Two-Orbit-Modus. Dies ist eine besondere Betriebsart, die erst vor kurzem an BESSY II entwickelt wurde und die Basis für die schnelle Umschaltung liefert. Der ultraschnelle Wechsel der Lichthelizität ist vor allem für Untersuchungen von Prozessen in magnetischen Materialien interessant und wird schon seit langem von einer großen Nutzergemeinde erwartet. [...]
  • <p></p> <p>Schematische Darstellung der Coronavirus-Protease. Das Enzym kommt als Dimer bestehend aus zwei identischen Molek&uuml;len vor. Ein Teil des Dimers ist in Farbe dargestellt (gr&uuml;n und violett), der andere in grau. Das kleine Molek&uuml;l in gelb bindet an das aktive Zentrum der Protease und k&ouml;nnte als Blaupause f&uuml;r einen Hemmstoff dienen.</p>
    Science Highlight
    19.03.2020
    Coronavirus SARS-CoV2: BESSY II-Daten beschleunigen die Suche nach Wirkstoffen
    Ein Coronavirus hält die Welt in Atem. SARS-CoV-2  ist hochansteckend und kann schwere Lungenentzündung mit Atemnot (COVID-19) verursachen. Weltweit sucht die medizinische Forschung nach Möglichkeiten, wie man die Vermehrung der Viren mithilfe von Medikamenten verhindern kann. Ein Team der Universität Lübeck und am Helmholtz-Zentrum für Infektionsforschung (HZI) hat dafür einen vielversprechenden Ansatz gefunden. Mithilfe des hochintensiven Röntgenlichts der Berliner Synchrotronquelle BESSY II haben sie die dreidimensionale Architektur der viralen Hauptprotease von SARS-CoV-2 entschlüsselt. Die virale Hauptprotease ist an der Vermehrung des Virus beteiligt. [...]
  • <p>MXene sind 2D-Materialien, die Flocken aus vielen Schichten bilden (links) und sich als Pseudokondensatoren eignen. Durch R&ouml;ntgenanalysen zeigen sich Ver&auml;nderungen in der chemischen Struktur im Vergleich von reinen MXene (mitte) und MXene mit zwischengelagertem Harnstoff (rechts).</p>
    Science Highlight
    02.03.2020
    Schnell und stark: Neue 2D-Materialien mit Talent zur Energiespeicherung
    Eine neue Materialklasse kann elektrische Energie sehr schnell speichern. Es handelt sich um zweidimensionale Titankarbide, so genannte MXene. Wie eine Batterie speichern sie durch elektrochemische Reaktionen große Mengen elektrischer Energie - aber im Gegensatz zu Batterien können sie in Sekundenschnelle geladen und entladen werden. In Zusammenarbeit mit der Drexel-Universität hat ein Team am HZB gezeigt, dass die Einlagerung von Harnstoffmolekülen zwischen den MXene-Schichten die Kapazität solcher "Pseudokondensatoren" um mehr als 50 Prozent erhöhen kann. An BESSY II haben sie analysiert, welche Veränderungen der MXene-Oberflächenchemie nach der Harnstoffeinlagerung dafür verantwortlich sind. [...]
  • <p>Kombination der einzelnen Aufnahmen zu einem 3D-Bild der Zellarchitektur mit Mitochondrien (gr&uuml;n), Lysosomen (lila), multivesikul&auml;ren K&ouml;rperchen (rot) und dem endoplasmatischen Retikulum (beige).</p>
    Science Highlight
    12.02.2020
    Röntgenmikroskopie an BESSY II: Nanopartikel können Zellen verändern
    Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an den Synchrotronlichtquellen BESSY II und ALBA. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally. [...]
  • <p>Bei 25,8 Tesla findet in dem Urankristall ein Phasen&uuml;bergang statt und ein komplexes magnetisches Muster etabliert sich.</p>
    Science Highlight
    10.02.2020
    Nicht alle Kristalle lassen sich zum Ferromagnetismus zwingen
    Mit einem äußeren Magnetfeld lassen sich normalerweise die winzigen magnetischen Momente in Festkörpern entlang des Außenfeldes ausrichten – so dass die Probe schließlich ferromagnetisch wird. Doch das trifft nicht auf jedes Material zu. Ein Team hat nun Kristalle aus einer Uranverbindung unter extrem hohen Magnetfeldern mit Neutronen untersucht und ein deutlich komplexeres Verhalten beobachtet. Die Experimente fanden am Hochfeldmagneten an der Neutronenquelle BER II des HZB statt, der ein konstantes Magnetfeld von bis zu 26 Tesla erzeugt. Dies ist etwa 500.000mal stärker als das Erdmagnetfeld. Weitere Experimente mit gepulsten Magnetfeldern bis zu 45 Tesla wurden am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) durchgeführt.  [...]
  • <p>Das Synchrotron-R&ouml;ntgen-Tomogramm zeigt starke Risse (schwarz) im Bereich der elektrischen Kontaktierung (wei&szlig;).</p>
    Science Highlight
    07.02.2020
    Batterieforschung: Mit Neutronen und Röntgenlicht die Alterung von Lithium-Batterien analysiert
    Ein internationales Team hat mit Neutronen- und Röntgen-Tomographie die dynamischen Prozesse untersucht, die an den Elektroden in Lithium-Batterien stattfinden und zu Leistungsabbau führen. Mit einem neuen mathematischen Verfahren gelang es, die zu einer kompakten Rolle aufgewickelten Elektroden „virtuell zu entrollen“ und so tatsächlich zu beobachten, was an den Elektroden geschieht. Die Studie wurde in Nature Communications veröffentlicht. [...]
  • Science Highlight
    31.01.2020
    Perowskit-Solarzellen: Internationaler Konsens über Alterungs-Messprotokolle
    Expertinnen und Experten aus 51 Forschungseinrichtungen, darunter auch aus dem HZB, haben sich nun auf die Verfahren geeinigt, um die Stabilität von Perowskit-Solarzellen zu messen und ihre Qualität zu bewerten. Die Konsenserklärung wurde in Nature Energy publiziert und gilt als Meilenstein für die weitere Entwicklung dieses neuen Solarzellen-Typs auf dem Weg zur industriellen Anwendung. [...]
  • <p>Die Tandemsolarzelle wurde im typischen Laborma&szlig;stab von einem Quadratzentimeter realisiert. Das Aufskalieren ist jedoch m&ouml;glich.</p>
    Science Highlight
    29.01.2020
    Rekord: Wirkungsgrad von Perowskit-Tandemsolarzelle springt auf 29,15 Prozent
    Im Rennen um immer höhere Wirkungsgrade liegt ein HZB-Entwicklungsteam wieder vorne. Die Gruppen von Steve Albrecht und Bernd Stannowski  haben eine Tandemsolarzelle aus den Halbleitern Perowskit und Silizium entwickelt, die 29,15 Prozent des eingestrahlten Lichts in elektrische Energie umwandelt. Dieser Wert ist offiziell durch das CalLab des Fraunhofer-Instituts für Solare Energiesysteme (ISE) zertifiziert. Damit ist die Überwindung der 30% Effizienz-Marke in greifbare Nähe gerückt. [...]
  • <p>Auf Bodenproben mit unterschiedlicher Blei-Belastung wuchsen Pfefferminzpflanzen. Anschlie&szlig;end wurde der Bleigehalt in ihren Bl&auml;ttern analysiert.</p>
    Science Highlight
    21.01.2020
    Pflanzen nehmen Blei aus Perowskit-Solarzellen stärker auf als erwartet
    Blei aus metall-organischen Perowskitverbindungen wird deutlich stärker von Pflanzen aufgenommen als beispielsweise Blei aus anorganischen Quellen. Dies zeigt eine Studie von HZB-Forscher Antonio Abate mit Partnern aus China und Italien, die in Nature communications veröffentlicht ist. [...]
  • <p></p> <p>Rhodopsin vor der Aktivierung durch Licht (links) und danach (rechts): Die Anregung f&uuml;hrt im Innern des Molek&uuml;ls zu &Auml;nderungen an funktionalen Gruppen (Lupe), die sich auf das gesamte Molek&uuml;l auswirken.</p>
    Science Highlight
    14.01.2020
    Sehen, riechen, schmecken: Wie Biomoleküle in Sinneszellen funktionieren
    Ein Team hat analysiert, wie sich das Biomolekül Rhodopsin nach der Aktivierung durch Licht verändert. Rhodopsin spielt beim Sehen eine zentrale Rolle, ist aber auch ein Prototyp für Rezeptoren in anderen Sinnesorganen. Ein neu entwickeltes Infrarotspektrometer an BESSY II hat es ermöglicht, diese Untersuchung erstmals unter natürlichen Bedingungen durchzuführen. Mit der neuen Methode lassen sich schnelle, irreversible Reaktionen mit nur einer einzigen Messung beobachten. Bislang mussten dafür tausende solcher Reaktionen ausgewertet werden. Viele biologische Prozesse sind jedoch irreversibel und lassen sich nicht zyklisch wiederholen. [...]
  • Science Highlight
    18.12.2019
    Topologische Materialien für die Informationstechnologie: Verlustfrei Signale übertragen
    Neue Experimente an BESSY II mit magnetisch dotierten Topologischen Isolatoren zeigen vielversprechende Möglichkeiten für eine verlustfreie Signalübertragung auf. Ein überraschendes Phänomen der Selbstorganisation hilft dabei. Zukünftig könnte es so möglich sein, Materialien zu entwickeln, die dieses Phänomen bei Raumtemperatur zeigen und sich als Q-Bit Recheneinheiten in einem Quantencomputer einsetzen lassen. Die Arbeit ist im renommierten Wissenschaftsjournal Nature publiziert. [...]
  • <p>Auf dem Cover k&uuml;ndigt die Zeitschrift Chemmedchem die Arbeit an.</p>
    Science Highlight
    12.12.2019
    Krebsforschung an BESSY II: Bindungsmechanismen von therapeutischen Substanzen entschlüsselt
    In Tumorzellen ist die DNA im Vergleich zu normalen Körperzellen verändert. Wie solche Veränderungen verhindert oder gehemmt werden können, ist ein spannendes Forschungsgebiet mit großer Relevanz für die Entwicklung von Krebsbehandlungen. Ein interdisziplinäres Team hat nun durch Proteinkristallographie an BESSY II die möglichen  Bindungsmechanismen von bestimmten therapeutischen Substanzen aus der Gruppe der Tetrazolhydrazide an ein entscheidendes Protein in der Zelle analysiert. [...]
  • <p>Die Zeichnung verdeutlicht, wie das organische Methylammoniumion (CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>) mit den Jodid-Ionen wechselwirkt. Durch die Verschiebung der Jod-Atome aus der gemeinsamen Ebene mit Blei geht das Symmetriezentrum verloren.</p>
    Science Highlight
    13.11.2019
    Perowskit-Solarzellen: Mögliche Ursache für hohe Wirkungsgrade aufgedeckt
    Ein HZB-Team hat durch kristallographische Analysen an der Synchrotronquelle Diamond Light Source (DLS) in Großbritannien erstmals nachgewiesen, dass Hybrid-Perowskite ohne Inversions-Zentren auskristallisieren. Durch Wechselwirkungen zwischen den organischen Molekülen und benachbarten Jod-Atomen können sich so ferroelektrische Domänen bilden, die über weitere Effekte höhere Wirkungsgrade in Solarzellen ermöglichen. In anorganischen Perowskiten kann diese ferroelektrische Domänenbildung nicht stattfinden. [...]
  • <p>Nach Einf&auml;rbung sind die Plasmodien (Blau und Gr&uuml;n) in der Blutzelle mit vielen Details zu erkennen, unter anderem ist die Vakuole sichtbar.</p>
    Science Highlight
    30.10.2019
    Röntgenanalyse an BESSY II zeigt, wie Malaria-Wirkstoffe die Erreger bekämpfen
    Malaria zählt zu den bedrohlichsten Infektionserkrankungen weltweit. Nun konnte ein internationales Team Malaria-Erreger in roten Blutkörperchen unter natürlichen Bedingungen mit Röntgenmikroskopie an BESSY II und den Synchrotonquellen ALBA und ESRF untersuchen. Die Auswertung zeigt, über welche Mechanismen Wirkstoffe die Erreger angreifen. Dies könnte dazu beitragen, Wirkstoffe und Therapien gezielt zu verbessern. [...]
  • <p>Die Illustration zeigt Sykrmionen in einer ihrer Eigenschwingungen. Hier drehen sie im Uhrzeigersinn.</p>
    Science Highlight
    15.10.2019
    „Tanzmuster“ von Skyrmionen vermessen
    In bestimmten magnetischen Materialien wie Cu2OSeO3 entstehen magnetische Wirbel, so genannte Skyrmionen. Diese Skyrmionen lassen sich durch niedrige elektrische Ströme kontrollieren, was eine energiesparende Datenverarbeitung ermöglichen könnte. Nun ist es einem Team gelungen, an der VEKMAG-Station an BESSY II eine neue Technik zu entwickeln, um diese Wirbel präzise zu vermessen und dabei die drei unterschiedlichen Eigenschwingungen zu beobachten. [...]
  • <p>Die zeitaufgel&ouml;ste 3D-Neutronentomographie zeigt den Aufstieg von deuteriertem Wasser im Wurzelsystem einer Lupinenpflanze.</p>
    Science Highlight
    25.09.2019
    So schnell wie noch nie – Neutronentomographie zeigt, wie Wurzeln "trinken"
    Ein Team von Forschenden aus Potsdam, Berlin und Grenoble konnte mit ultraschneller 3D-Neutronenbildgebung den Transport von Wasser im Boden und die anschließende Aufnahme durch die Wurzeln von Lupinen visualisieren. Die ultrakurze Neutronentomographie, die am HZB entwickelt wurde, erzeugt alle 1,5 Sekunden eine vollständige 3D-Aufnahme und ist damit siebenmal so schnell wie zuvor. Die Erkenntnisse sind hilfreich, um die Wasser- und Nährstoffaufnahme von Nutzpflanzen besser zu verstehen. Die Messungen fanden an der Neutronenquelle des Instituts Laue Langevin in Grenoble, Frankreich statt. Die Methode ist auch für die Analyse von Transportprozessen in anderen Materialien interessant. [...]
  • <p>Bis zu drei Tropfen Proteinl&ouml;sung k&ouml;nnen auf den Probenhalter gegeben werden.</p>
    Science Highlight
    16.09.2019
    Neuer Probenhalter für die Proteinkristallographie
    Ein HZB-Team hat einen neuartigen Probenhalter entwickelt, der die Messung von Proteinkristallen deutlich erleichtert. In einem kurzen Video zeigen die Forscher, wie Proteine in Lösung auf den neuen Probenhaltern selbst auskristallisieren und im Anschluss an den MX-Beamlines von BESSY II analysiert werden können. Ein Patent ist bereits erteilt und ein Hersteller gefunden. [...]
  • <p>Die Pero-CIGS-Tandemzelle erreicht den Rekordwirkungsgrad von 23,26 Prozent.</p>
    Science Highlight
    09.09.2019
    Weltrekord für Perowskit-CIGS-Tandem-Solarzelle
    Ein Team um Prof. Steve Albrecht aus dem HZB stellt auf der weltgrößten internationalen Fachkonferenz EU PVSEC in Marseille am 11. September 2019 einen neuen Weltrekord für eine Tandem-Solarzelle vor. Die Solarzelle kombiniert die Halbleitermaterialien Perowskit und CIGS und erreicht damit einen zertifizierten Wirkungsgrad von 23,26 Prozent. Ein Grund für diesen Erfolg liegt in einer Zwischenschicht aus organischen Molekülen, die sich selbstorganisiert so anordnen, dass auch raue Halbleiter-Oberflächen lückenlos bedeckt werden. Dafür wurden zwei Patente eingereicht. [...]
  • <p>Diese am HZB selbstentwickelte Messzelle erm&ouml;glicht es, die Batteriezelle in "operando" zu analysieren.</p>
    Science Highlight
    06.09.2019
    Nanopartikel in Lithium-Schwefel-Akkus mit Neutronen aufgespürt
    Ein HZB-Team hat erstmals mit Hilfe von Neutronenexperimenten präzise analysiert, wie und wo sich Nanopartikel aus Lithiumsulfid und Schwefel im Lauf der Ladezyklen an den Batterie-Elektroden abscheiden. Die Ergebnisse können dazu beitragen, die Lebensdauer von Lithium-Schwefel-Akkus zu erhöhen. [...]
  • <p>Die Nano-Antennen werden im Elektronenmikroskop mit direktem Elektronenstrahlschreiben erzeugt.</p>
    Science Highlight
    23.08.2019
    Mit Mathe Zeit sparen: Design-Werkzeug für korkenzieherförmige Nano-Antennen
    Erstmals hat ein HZB-Team mathematisch exakt formuliert, wie korkenzieherförmige Nano-Antennen mit Licht wechselwirken. Mit dem mathematischen Werkzeug lässt sich die jeweils geeignete Geometrie berechnen, die eine Nano-Antenne für konkrete Anwendungen in der Sensorik oder in der Informationstechnologie besitzen muss. [...]
  • <p>Der Messtisch rotiert extrem pr&auml;zise und mehrere hundert Male pro Sekunde um seine Achse.</p>
    Science Highlight
    21.08.2019
    Tomographie-Weltrekord: Zuschauen, wie Metall aufgeschäumt wird
    Mit einem am HZB entwickelten Rotationstisch hat ein internationales Forscher-Team an der Synchrotron Lichtquelle Schweiz, SLS, einen neuen Rekord erreicht: Mit 208 dreidimensionalen Röntgenaufnahmen (Tomographien) pro Sekunde konnten sie die dynamischen Prozesse beim Aufschäumen von flüssigem Aluminium dokumentieren. Im Fachjournal Nature Communications wird die Methode vorgestellt. [...]
  • <p>Ein Forscherteam untersuchte ein antikes Papyrus mit einer vermeintlichen leeren Stelle. Mithilfe mehrerer Methoden entdeckte es, welche Zeichen einst an dieser Stelle standen und welche Tinte verwendet wurde.&nbsp;</p>
    Science Highlight
    14.08.2019
    Archäologie an BESSY II: „Geheimtinte“ auf antikem Papyrus vom Nil enthüllt
    Forscher des Ägyptischen Museums und Papyrussammlung, der Berliner Universitäten und des Helmholtz-Zentrums Berlin untersuchten ein kleines Papyrus-Stück, das vor zirka 100 Jahren auf der Nil-Insel Elephantine ausgegraben wurde. Unter anderem nutzten die Forschenden zerstörungsfreie Methoden an BESSY II. Die Arbeit, über die Forscher im Journal of Cultural Heritage berichteten, ist für weitere Analysen der Papyrussammlung in Berlin und darüber hinaus wegweisend. [...]
  • <p class="MsoCommentText">Die Fotomontage zeigt eine Probe aus reinem Niob (links) und eine Probe, die mit Nb<sub>3</sub>Sn beschichtet wurde (rechts).</p>
    Science Highlight
    15.07.2019
    Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet
    Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet. [...]
  • Science Highlight
    10.07.2019
    Älteste vollständig erhaltene Lilie entdeckt
    Bereits vor 115 Millionen Jahren waren tropische Blütenpflanzen offenbar sehr vielfältig und zeigten alle typischen Merkmale. Zu diesem Schluss kommt ein internationales Forscherteam unter Leitung von Clément Coiffard, Museum für Naturkunde Berlin. Das Team berichtet in der renommierten Fachzeitschrift Nature Plants über die älteste vollständig erhaltene Lilie, Cratolirion bognerianum, die an einem Fundort im heutigen Brasilien entdeckt wurde. Mit Hilfe von 3D-Computertomographien am Helmholtz-Zentrum Berlin ließen sich auch Details auf der Rückseite der fossilisierten Pflanze analysieren. Die Ergebnisse werfen neue Fragen über die Rolle der Tropen bei der Entwicklung damaliger und heutiger Ökosysteme auf. [...]
  • <p>Ein R&ouml;ntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden.</p>
    Science Highlight
    09.07.2019
    Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert
    In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild. [...]
  • <p>Nach Anregung durch Synchrotronstrahlung (gr&uuml;n) emittiert Nickel R&ouml;ntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 &deg;C erh&ouml;ht (rechts).</p>
    Science Highlight
    28.06.2019
    Ultraschneller Magnetismus: Elektron-Phonon-Wechselwirkungen an BESSY II analysiert
    Wie schnell kann ein Magnet seine Ausrichtung ändern und was sind die mikroskopischen Mechanismen? Diese Fragen sind für die Entwicklung von Datenspeichern und Computerchips von größter Bedeutung. Jetzt ist es einem HZB-Team am BESSY II erstmals gelungen, den wichtigsten mikroskopischen Prozess des ultraschnellen Magnetismus experimentell zu beobachten. Die zu diesem Zweck entwickelte Methodik kann auch zur Untersuchung von Wechselwirkungen zwischen Spins und Gitterschwingungen in Graphen, Supraleitern oder anderen (Quanten-)Materialien verwendet werden. [...]
  • <p>Die Illustration deutet im Hintergrund das Laserexperiment an und die Struktur des TGCN.</p>
    Science Highlight
    05.06.2019
    Organische Elektronik: Neuer Halbleiter aus der Familie der Kohlenstoffnitride
    Teams der Humboldt-Universität und am Helmholtz-Zentrum Berlin haben ein neues Material aus der Familie der Kohlenstoffnitride untersucht. Das Triazin-basierte graphitische Kohlenstoffnitrid (TGCN) ist ein Halbleiter, der sich gut für Anwendungen in der Optoelektronik eignen sollte. Die Struktur ist zweidimensional und erinnert an Graphen. Anders als beim Graphen ist die Leitfähigkeit jedoch senkrecht zu den Ebenen 65mal höher als in den Ebenen selbst. [...]
  • <p>Experimente an der Femtoslicing-Anlage von BESSY II zeigten den ultraschnellen Drehimpulsfluss von Gd- und Fe-Spins zum Gitter w&auml;hrend der Entmagnetisierung der GdFe-Legierung.</p>
    Science Highlight
    10.05.2019
    Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?
    Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden. Magnetisierung wiederum ist fundamental mit dem Drehimpuls der Elektronen im Material verbunden. Ein Forscherteam des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnte nun an BESSY II den Drehimpulstransfer in einer ferrimagnetischen Eisen-Gadolinium-Legierung im Detail verfolgen. Dabei gelang es ihnen, am Femtoslicing-Experiment bei BESSY II die ultraschnelle optische Entmagnetisierung zu vermessen und deren grundlegende Prozesse und Geschwindigkeitsgrenzen zu verstehen. Die Forschungsergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht. [...]
  • <p>Ein erster Laserpuls (gr&uuml;n) regt die Elektronen im Cu<sub>2</sub>O an; Bruchteile von Sekunden sp&auml;ter folgt ein zweiter Laserpuls (UV-Licht), um die Energie des angeregten Elektrons zu messen.</p>
    Science Highlight
    09.05.2019
    Photokathoden aus Kupferoxid: Laserexperiment zeigt Ursachen für hohe Verluste
    Kupferoxid könnte in Solarzellen oder als Photokathode für die solare Energieumwandlung theoretisch hohe Wirkungsgrade ermöglichen. Praktisch aber kommt es zu großen Verlusten. Nun konnte ein Team am HZB mit einem raffinierten Femtosekunden-Laserexperiment aufklären, wo diese Verluste stattfinden: Sie treten weniger an den Grenzflächen auf, sondern vielmehr bereits im Innern des kristallinen Materials. Diese Ergebnisse geben Hinweise, um Kupferoxid und andere Metalloxide für Anwendungen als Energiematerialien zu optimieren. [...]
  • <p>Die Tomographie einer neuwertigen Lithium-Elektrode.</p>
    Science Highlight
    06.05.2019
    3D-Tomographien zeigen, wie Lithium-Akkus altern
    Lithium-Akkus verlieren mit der Zeit an Kapazität. Bei jeder neuen Aufladung können sich Mikrostrukturen an den Elektroden bilden, die die Kapazität weiter reduzieren. Nun hat ein HZB-Team zusammen mit Batterieforschern aus dem Forschungszentrum Jülich, der Universität Münster und Partnern aus Forschungseinrichtungen in China den Prozess der Degradation von Lithium-Elektroden erstmals im Detail dokumentiert. Dies gelang ihnen mithilfe eines 3D-Tomographieverfahrens mit Synchrotronstrahlung an BESSY II (HZB) sowie am Helmholtz-Zentrum Geesthacht (HZG). Ihre Ergebnisse sind in der Fachzeitschrift Materials Today veröffentlicht (Open Access). [...]
  • <p></p> <p>Durch Ko-Verdampfung von C&auml;siumiodid und&nbsp; Bleiiodid&nbsp; lassen sich d&uuml;nne Schichten aus CsPbI<sub>3</sub> auch bei moderaten Temperaturen herstellen. Ein C&auml;sium-&Uuml;berschuss f&uuml;hrt zu stabilen Perowskit-Phasen.</p>
    Science Highlight
    29.04.2019
    Anorganische Perowskit-Absorber für den Einsatz in Dünnschicht-Solarzellen
    Einem Team am Helmholtz-Zentrum Berlin ist es gelungen, durch Ko-Verdampfung anorganische Perowskit-Dünnschichten bei moderaten Temperaturen herzustellen – ein Nachtempern bei hohen Temperaturen entfällt. Dadurch lassen sich Dünnschichtsolarzellen aus diesem Material deutlich leichter herstellen. Anorganische Perowskite sind im Gegensatz zu den hybriden metallorganischen Perowskiten thermisch stabiler. Die Arbeit ist im Fachjournal Advanced Energy Materials veröffentlicht. [...]
  • <p>Zinnselenid besitzt eine schichtartige orthorhombische Kristallstruktur (links). Oberhalb von 500 Grad Celsius (rechts) &auml;ndert sich die Anordnung der Schichten.</p>
    Science Highlight
    24.04.2019
    Thermoelektrika: Neue Einblicke ins Rekordmaterial Zinnselenid
    Bei den Thermoelektrika könnte Zinnselenid die bisherigen Rekordhalter aus Wismuttellurid an Effizienz deutlich übertreffen. Allerdings ist der thermoelektrische Effekt in Zinnselenid nur bei Temperaturen oberhalb von 500 Grad so enorm. Nun zeigen Messungen an den Synchrotronquellen BESSY II und PETRA III, dass sich Zinnselenid auch bei Raumtemperatur als Thermoelektrikum nutzen lässt – sofern man hohen Druck anlegt. [...]
  • <p>Das Enzym MHETase ist ein riesiges komplex gefaltetes Molek&uuml;l. MHET-Molek&uuml;le aus PET-Kunststoff docken an einer aktiven Stelle im Inneren der MHETase an und werden dort aufgespalten.</p>
    Science Highlight
    12.04.2019
    „Molekulare Schere“ für den Plastikmüll
    Ein Team der Universität Greifswald und des Helmholtz-Zentrums Berlin (HZB) hat an BESSY II die Struktur eines wichtigen Enzyms ("MHETase") entschlüsselt. Die MHETase wurde in einem Bakterium entdeckt und ist in der Lage, zusammen mit einem zweiten Enzym, der PETase, den weit verbreiteten Kunststoff PET in seine Grundbausteine zu zerlegen. Die 3D-Struktur der MHETase ermöglichte es den Forschern bereits, die Aktivität dieses Enzyms gezielt zu optimieren, um es zusammen mit der PETase für das nachhaltige Recycling von PET zu nutzen. Die Ergebnisse wurden in der Fachzeitschrift Nature Communications veröffentlicht. [...]
  • <p>Die Rasterelektronenmikroskopie zeigt einen Molybd&auml;nsulfidfilm, der bei Raumtemperatur aufgebracht wurde.</p>
    Science Highlight
    04.04.2019
    Katalysatorforschung für Solare Brennstoffe: Amorphes Molybdänsulfid funktioniert am besten
    Für die Produktion von Wasserstoff mit Sonnenlicht werden effiziente und preisgünstige Katalysatoren gebraucht. Molybdänsulfide gelten als gute Kandidaten. Nun hat ein Team am HZB aufgeklärt, welche Prozesse während der Katalyse an  Molybdänsulfiden ablaufen und wieso ausgerechnet amorphes Molydänsulfid am besten funktioniert. Die Ergebnisse wurden im Fachjournal ACS-Catalysis veröffentlicht. [...]
  • <p>Phillippe Wernet schl&auml;gt am Ende seines Beitrags einen gro&szlig;en Bogen von der Vergangenheit (Opticae Thesaurus, 1572) der Forschung mit Licht bis in die Zukunft.</p>
    Science Highlight
    02.04.2019
    HZB an Sonderausgabe zu Ultraschneller Dynamik mit Röntgenmethoden beteiligt
    In der jetzt erschienenen Sonderausgabe der „Philosophical Transactions of the Royal Society of London“  berichten international ausgewiesene Experten über neue Entwicklungen bei Röntgenquellen und ultraschnellen zeitaufgelösten Experimenten. Auch HZB-Physiker wurden zu Beiträgen aufgefordert und haben geliefert. [...]
  • <p>Skizze einer Kohlenstoffstruktur mit Poren.</p>
    Science Highlight
    13.03.2019
    Röntgenanalyse von Kohlenstoff-Nanostrukturen hilft beim Materialdesign
    Nanostrukturen aus Kohlenstoff sind äußerst vielseitig: Sie können in Batterien und Superkondensatoren Ionen aufnehmen, Gase speichern oder Wasser entsalzen. Wie gut sie diese Aufgaben meistern, hängt von Größe und Form der Nanoporen ab. Über die Temperatur während der Synthese lassen sich die Nanoporen dabei stark verändern.  Bisher war es nur möglich, Form, Größe sowie die Verteilung der Nanoporen ungefähr abzuschätzen. Eine neue Studie zeigt nun, dass sich solche Informationen direkt und zuverlässig mit Hilfe der Kleinwinkel-Röntgenstreuung gewinnen lassen. Die Ergebnisse wurden in der Zeitschrift Carbon veröffentlicht. [...]
  • <p>Mit R&ouml;ntgenlicht (blau) werden Wassermolek&uuml;le angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen &uuml;ber Wasserstoffbr&uuml;cken gewinnen.</p>
    Science Highlight
    20.02.2019
    Wasser ist homogener als gedacht
    Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1%  Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen. [...]
  • <p>Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet. &nbsp;</p>
    Science Highlight
    14.02.2019
    Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen
    Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen. [...]
  • <p>Eine extrem d&uuml;nne Zwischenschicht verbessert die Eigenschaften der CIGSe-Perowskit-Tandemzelle.</p>
    Science Highlight
    31.01.2019
    Hauchdünn und extrem effizient: Dünnschicht-Tandemzelle aus Perowskit- und CIGSe-Halbleitern
    Ein HZB-Team hat eine Tandem-Solarzelle mit reinen Dünnschicht-Solarzellen aus Perowskit und CIGSe hergestellt und charakterisiert. Dabei setzten sie auf ein einfaches, robustes Produktionsverfahren, das sich auch für die Aufskalierung auf große Flächen eignet. Die Tandem-Solarzelle besitzt einen sehr hohen Wirkungsgrad von 21.6 %. Durch weitere Optimierung könnte sie Wirkungsgrade über 30 % erreichen. [...]
  • <p>Wie Lithium in die Silizium-Anode einwandert, hat das Team mit Neutronenstrahlen (rote Pfeile) gemessen.</p>
    Science Highlight
    28.01.2019
    Batterien mit Siliziumanoden: Neutronenexperimente zeigen, wie Oberflächenstrukturen die Kapazität reduzieren
    Theoretisch könnten Anoden aus Silizium zehnmal mehr Lithium-Ionen speichern als die Graphit-Anoden, die seit vielen Jahren in kommerziellen Lithium-Batterien eingesetzt werden. Doch bisher sinkt die Kapazität von Silizium-Anoden mit jedem weiteren Lade-Entladezyklen stark ab. Nun hat ein HZB-Team mit Neutronenexperimenten am BER II in Berlin und am Institut Laue-Langevin in Grenoble aufgeklärt, was an der Oberfläche der Siliziumanode während des Aufladens passiert und welche Prozesse die Kapazität reduzieren. [...]
  • <p class="MsoPlainText">Die Atmosph&auml;re l&auml;sst sich mit einer Badewanne vergleichen, die nur bis zum Rand gef&uuml;llt werden kann, damit die Erderw&auml;rmung auf einen bestimmten Wert begrenzt bleibt. Mit negativen Emissionen k&ouml;nnte man einen weiteren kleinen Abfluss schaffen. Dennoch f&uuml;hrt kein Weg daran vorbei, den Hahn zuzudrehen.</p>
    Science Highlight
    16.01.2019
    Klimawandel: Was könnte künstliche Photosynthese beitragen, um die globale Erwärmung zu begrenzen?
    Wenn die CO2-Emissionen nicht rasch genug sinken, muss künftig CO2 aus der Atmosphäre entfernt werden, um die globale Erwärmung zu begrenzen. Nicht nur Aufforstung oder Biomasse, sondern auch neue Technologien für künstliche Photosynthese könnten dazu beitragen. Ein HZB-Physiker und eine Forscherin der Universität Heidelberg haben überschlagen, welche Flächen solche Lösungen benötigen. Die künstliche Photosynthese könnte CO2 zwar effizienter binden als das natürliche Vorbild, aber noch gibt es keine großen und langzeitstabilen Module. Ihre Berechnungen veröffentlichte das Team in „Earth System Dynamics“. [...]
  • <p>(a) Neutronen-Eigenspannungsmessung an einer Schwei&szlig;probe aus handels&uuml;blichen Stahl, (b) Magnetfeldmessung, (c) Schwei&szlig;nahtquerschliff.</p>
    Science Highlight
    21.12.2018
    Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren
    Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern. [...]
  • <p>Photokathode im supraleitenden Photoinjektorsystem.</p>
    Science Highlight
    07.12.2018
    Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz
    Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert, so dass diese nun hohe  Quanteneffizienz besitzen. Damit stehen geeignete Photokathoden zur Verfügung, um 2019 den ersten Elektronenstrahl in bERLinPro zu erzeugen.  [...]
  • <p>Das Molek&uuml;l organisiert sich entlang der Oberfl&auml;che der Elektroden, bis eine geschlossene Monolage entsteht.</p>
    Science Highlight
    23.11.2018
    Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen
    Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu realisieren: Es basiert auf Molekülen, die sich selbstorganisierend anordnen und eine Monolage bilden. Die Studie wurde in Advanced Energy Materials publiziert und ist auf dem Front-Cover des Journals erschienen. [...]
  • <p>Die Illustration zeigt eine Verbindung, in deren Zentrum ein Eisen-Atom sitzt. Es ist von 4 CN-Gruppen und einem Bipyridin Molek&uuml;l umgeben. Das h&ouml;chste besetzte Eisenorbital ist als gr&uuml;n-rote Wolke dargestellt. Sobald eine Cyangruppe da ist, beobachtet man wie sich die &auml;u&szlig;eren Eisenorbitale delokalisieren, sodass auch um die Stickstoffatome Elektronen dicht vorhanden sind. Bild. T. Splettst&ouml;&szlig;er/HZB</p>
    Science Highlight
    14.11.2018
    Übergangsmetallkomplexe: Gemischt geht's besser
    Ein Team hat an BESSY II untersucht, wie unterschiedliche Eisenkomplex-Verbindungen Energie aus eingestrahltem Licht verarbeiten. Dabei konnten sie zeigen, warum bestimmte Verbindungen das Potenzial haben, Licht in elektrische Energie umzuwandeln. Die Ergebnisse sind für die Entwicklung von organischen Solarzellen interessant. Die Studie wird auf dem Cover der Fachzeitschrift PCCP angekündigt. [...]
  • <p></p> <p>Die REM-Aufnahme zeigt den Querschnitt durch eine Silizium-Perowskit-Tandemsolarzelle.</p>
    Science Highlight
    12.11.2018
    Neue Rekorde bei Perowskit-Silizium-Tandemsolarzellen durch verbesserten Lichteinfang
    Durch mikrostrukturierte Schichten konnte ein HZB-Team den Wirkungsgrad von Perowskit-Silizium-Tandemsolarzellen auf aktuell 25,5 Prozent steigern, dem höchsten Wert, der bis jetzt publiziert werden konnte. Gleichzeitig gelang es mit Hilfe von rechnerischen Simulationen, die Lichtumwandlung in verschiedenen Zelldesigns zu untersuchen. Diese Modellierungen ermöglichen die Optimierung des Lichtmanagements sowie detaillierte Ertragsanalysen. Die Studie wurde nun in Energy & Environmental Science publiziert. [...]
  • <p>Die Messungen zeigen beim doppellagigem Graphen, dass die Bandstruktur einen flachen Bereich etwas unterhalb der Fermi-Energie aufweist.</p>
    Science Highlight
    10.11.2018
    Graphen auf dem Weg zur Supraleitung
    Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.   [...]
  • <p>Mit Fremdatomen dotierter Schaum aus Kohlenstoff. </p>
    Science Highlight
    18.10.2018
    Nanodiamanten als Photokatalysatoren
    Diamant-Nanomaterialien gelten als heiße Kandidaten für günstige Photokatalysatoren. Sie lassen sich durch Licht aktivieren und können dann bestimmte Reaktionen zwischen Wasser und CO2 beschleunigen und klimaneutrale „solare Brennstoffe“ erzeugen. Das EU-Projekt DIACAT hat nun solche Diamant-Materialien mit Bor dotiert und an BESSY II gezeigt, wie dies die photokatalytischen Eigenschaften deutlich verbessern könnte. [...]
  • <p>Die STM-Aufnahme zeigt Blauen Phosphor auf einem Gold-Substrat. Blau eingezeichnet sind die errechneten Positionen der leicht erh&ouml;hten P-Atome, wei&szlig;, die der tiefer liegenden. Im STM-Bild zeigen sich Gruppen aus sechs erh&ouml;hten P-Atomen als Dreiecke. </p>
    Science Highlight
    15.10.2018
    Blauer Phosphor – jetzt erstmals vermessen und kartiert
    Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente. Die Ergebnisse sind nun in Nano Letters publiziert.
    [...]
  • <p>Die Bilder zeigen den Verlauf der magnetischen Feldlinien im Inneren eines supraleitenden Blei-Quaders in zwei verschiedenen Schnittebenen (gestrichelter Umriss der Bleiprobe). Der Skalenstrich entspricht 5 mm. </p>
    Science Highlight
    02.10.2018
    Neutronen tasten Magnetfelder im Innern von Proben ab
    Mit Hilfe einer neu entwickelten Neutronen-Tomographie-Methode hat ein HZB-Team erstmals den Verlauf von magnetischen Feldlinien im Innern von Materialien abbilden können. Die „Tensorielle Neutronen-Tomographie“ verspricht neue Einblicke in Supraleiter, Batterie-Elektroden und andere Energiematerialien. [...]
  • <p>Darstellung des Prinzips einer Silizium-Multiplikatorsolarzelle mit organischen Kristallen<br /></p>
    Science Highlight
    02.10.2018
    HZB-Forscher finden Weg, die Wirkungsgrad-Grenze für Silizium-Solarzellen zu erhöhen
    Der Wirkungsgrad einer Solarzelle ist eine ihrer wichtigsten Kenngrößen. Er gibt an, wieviel Prozent der eingestrahlten Sonnenenergie in elektrische Energie umgewandelt wird. Die theoretische Grenze für Silizium-Solarzellen liegt aufgrund physikalischer Materialeigenschaften bei 29,3 Prozent. Im Fachjournal Materials Horizons beschreiben Forscher des Helmholtz-Zentrum Berlin (HZB) zusammen mit internationalen Kollegen, wie diese Grenze aufgehoben werden kann. Der Trick: sie bauen organische Schichten in die Solarzelle ein. Diese wandeln die Energie der hochenergetischen Photonen (grünes und blaues Licht) so um, dass sich die Stromausbeute in diesem Energiebereich verdoppelt. [...]
  • <p>Die Computersimulation zeigt, wie sich nach Anregung mit einem Laser in der Siliziumschicht mit Lochmuster das elektromagnetische Feld verteilt. Hier bilden sich Streifen mit lokalen Feldmaxima aus, so dass Quantenpunkte besonders stark leuchten. Bild. C. Barth/HZB</p>
    Science Highlight
    28.09.2018
    Maschinelles Lernen hilft, Photonik-Anwendungen zu optimieren
    Photonische Nanostrukturen erhöhen nicht nur die Effizienz von Solarzellen, sondern verbessern auch die Wirksamkeit von optischen Sensoren, die zum Beispiel als Krebsmarker verwendet werden. Mit Computersimulationen und dem Einsatz von maschinellem Lernen hat nun ein Team am HZB gezeigt, wie sich das Design solcher Nanostrukturen gezielt optimieren lässt. Die Ergebnisse sind in Communications Physics publiziert. [...]
  • <p>Monatliche Nachrichten aus dem HZB - bequem per Email.</p>
    Science Highlight
    24.09.2018
    Newsletter und Highlightbericht
    Vor genau zwanzig Jahren ist BESSY II in Betrieb gegangen. Im aktuellen September-Newsletter, den wir diese Woche verschicken, stellen wir die Jubiläums-Webseite vor, berichten über den neuen Highlightbericht 2017 und vermelden Erfolge im Technologietransfer. Haben Sie sich schon angemeldet für den Newsletter?
    [...]
  • <p>Die Nanostruktur zum Lichteinfang wird auf Siliziumoxid (blau) eingepr&auml;gt und dann mit Titanoxid (gr&uuml;n) &bdquo;eingeebnet&ldquo;. So entsteht eine optisch raue, aber dennoch glatte Schicht, auf der kristallines Silizium aufwachsen kann.</p>
    Science Highlight
    17.09.2018
    Patentierte Nanostruktur für Solarzellen: Raue Optik, glatte Oberfläche
    Kristalline Dünnschichtsolarzellen aus Silizium sind preisgünstig und schaffen Wirkungsgrade von gut 14 Prozent. Sie könnten allerdings noch mehr leisten, wenn ihre glänzenden Oberflächen weniger Licht reflektieren würden. Eine raffinierte, neue Lösung für dieses Problem hat ein Team um Prof. Dr. Christiane Becker vom Helmholtz-Zentrum Berlin (HZB) nun patentieren lassen. [...]
  • <p>Der Laserpuls (rot) erzeugt W&auml;rme im D&uuml;nnschichtsystem. Mit zeitaufgel&ouml;sten R&ouml;ntgendiffraktionsexperimenten l&auml;sst sich analysieren, wie sich die W&auml;rme verteilt. </p>
    Science Highlight
    21.08.2018
    Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen
    Ein Forscherteam aus dem Helmholtz-Zentrum Berlin (HZB) und der Universität Potsdam hat den Wärmetransport in einem Modellsystem aus nanometerdünnen metallischen und magnetischen Schichten untersucht. Ähnliche Systeme sind Kandidaten für künftige hocheffiziente Datenspeicher, die durch Laserpulse lokal erhitzt und neu beschrieben werden können (Heat-Assisted Magnetic Recording). Experimente mit kurzen Röntgenpulsen zeigten nun, dass sich in dem Modellsystem die Wärme hundertmal langsamer als erwartet verteilt. Die Ergebnisse sind in Nature Communications publiziert. [...]
  • <p>Grau sind die Alu-Granulate dargestellt, bunt die Poren. Wie sich diese Poren mit der Zeit vergr&ouml;&szlig;ern, zeigt die Serie von 3D-Tomographien. </p>
    Science Highlight
    08.08.2018
    Weltrekord: Schnellste 3D-Tomographien an BESSY II
    Ein HZB-Team hat an der EDDI-Beamline an BESSY II einen raffinierten Präzisions-Drehtisch entwickelt und mit einer besonderen, schnellen Optik kombiniert. Damit konnten sie die Porenbildung in Metall-Körnern während des Aufschäumens mit 25 Tomographien pro Sekunde dokumentieren – ein Weltrekord. [...]
  • <p>Die untersuchte Perowskit-Zelle hat bereits eine Fl&auml;che von 1 cm<sup>2</sup>. </p>
    Science Highlight
    01.08.2018
    Einblick in Verlustprozesse in Perowskit-Solarzellen ermöglicht Verbesserung der Effizienz
    In Perowskit-Solarzellen gehen Ladungsträger vor allem durch Rekombination an Defekten an den Grenzflächen verloren. Rekombination an Defekten im Inneren der Perowskit-Schicht begrenzt  dagegen die Leistungsfähigkeit der Zellen gegenwärtig nicht. Diese interessante Einsicht konnten Teams der Universität Potsdam und am Helmholtz-Zentrum Berlin (HZB)  nun mit quantitativ äußerst genauen Photolumineszenz-Messungen an 1 cm2 großen Perowskit-Absorberschichten gewinnen. Ihre Ergebnisse tragen zur gezielten  Verbesserung von Perowskit-Solarzellen bei und sind nun in Nature Energy publiziert. [...]
  • <p>Auch bei der Photosynthese spielen Mangan-Verbindungen als Katalysatoren eine Rolle. </p>
    Science Highlight
    31.07.2018
    Elektronische Prozesse während der Katalyse mit neuartigem Röntgen-Spektroskopie-Verfahren beobachtet
    Einem internationalen Team ist an BESSY II ein Durchbruch gelungen. Erstmals konnten sie elektronische Prozesse an einem Übergangsmetall im Detail  untersuchen und aus den Messdaten zuverlässige Rückschlüsse auf deren katalytische Wirkung  ziehen. Ihre Ergebnisse sind hilfreich, um gezielt katalytische Systeme, in deren Zentren Übergangmetalle stehen, für zukünftige Anwendungen zu entwickeln. Die Arbeit ist nun in Chemical Science, dem Open Access Journal der Royal Society of Chemistry, veröffentlicht. [...]
  • <div class="ce__subline ce__subline--black font--h7">&Uuml;bergabe der Technologieberichte an den parlamentarischen Staatssekret&auml;r Thomas Barei&szlig; (BMWi) durch Prof. Dr.-Ing. Manfred Fischedick und Dr. Peter Viebahn, (Wuppertal Institut) sowie Prof. Dr. Martin Wietschel (Fraunhofer ISI) und Juri Horst (IZES gGmbH). Quelle: Susanne Eriksson/BMWi</div>
<div class="ce__data-full"></div>
    Science Highlight
    26.07.2018
    Wissenstransfer: Neues Standardwerk zu Energietechnologien in Deutschland
    Vertreter des Wuppertal Instituts haben dem Bundesministerium für Wirtschaft und Energie (BMWi) einen mehrbändigen Bericht zu Energietechnologien übergeben. Dabei haben Experten aus dem HZB-Institut PVcomB am Themenfeld Photovoltaik mitgewirkt. Im Herbst verabschiedet die Bundesregierung das neue 7. Energieforschungsprogramm (EFP). Der Bericht liefert eine wissenschaftliche Basis für die Entwicklung des Programms. [...]
  • <p>Wie die pl&ouml;tzliche Erw&auml;rmung die magnetische Ordnung ver&auml;ndert, konnten die Forscher mit diesem Versuchsaufbau im Detail untersuchen.</p>
    Science Highlight
    16.07.2018
    Zukünftige Informationstechnologie: Schritt für Schritt aufgeklärt, was bei plötzlicher Erwärmung in Magneten passiert
    Magnetische Festkörper können sich bei Erhitzung entmagnetisieren. Trotz jahrzehntelanger Forschung war bisher unklar, wie dieser Prozess im Detail abläuft. Nun hat eine internationale Gruppe erstmals Schritt für Schritt beobachtet, wie sich bei plötzlicher Erhitzung die magnetische Ordnung in einem ferrimagnetischen Isolator verändert. Das Ergebnis: Die magnetische Ordnung ändert sich auf zwei Zeitskalen. Der erste Prozess ist überraschend schnell und benötigt nur eine Pikosekunde, während der zweite Prozess 100.000 mal länger dauert. Diese Einsicht könnte dazu beitragen, die Schaltgeschwindigkeit in magnetischen Speichermedien um mindestens den Faktor 1000 zu erhöhen.  Die Arbeit ist in Science Advances publiziert. [...]
  • <p>Aufbau der Photokathode: Licht f&auml;llt durch die transparente Schutzschicht mit katalytisch aktiven Rhodium-Partikeln in die Tandemzelle. Bild ACS Energy Letters</p>
    Science Highlight
    05.07.2018
    Neuer Weltrekord bei der direkten solaren Wasserspaltung
    In einem nachhaltigen Energiesystem wird Wasserstoff als Speichermedium eine wichtige Rolle spielen. Einem internationalen Forscher-Team ist es jetzt gelungen, den Wirkungsgrad für die direkte solare Wasserspaltung zur Wasserstoffgewinnung auf 19 Prozent zu steigern. Sie kombinierten dafür eine Tandem-Solarzelle aus III-V-Halbleitern mit Rhodium-Nanopartikeln und kristallinem Titandioxid. An der Forschungsarbeit waren Teams aus dem California Institute of Technology, der University of Cambridge, der TU Ilmenau und dem Fraunhofer Institut für Solare Energiesysteme ISE beteiligt. Ein Teil der Experimente fand am Institut für Solare Brennstoffe am Helmholtz-Zentrum Berlin statt. [...]
  • <p>Silizium-Heterojunction-Solarzelle, entwickelt vom PVcomB.</p>
    Science Highlight
    22.06.2018
    Silizium-Heterojunction-Solarzelle erzielt 23,1 Prozent Wirkungsgrad
    Forschende am Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik Berlin (PVcomB) haben Silizium-Heterojunction (SHJ)-Solarzellen mit einem zertifizierten Wirkungsgrad von über 23 Prozent (auf 4 cm² Zellfläche) entwickelt. Dieses Ergebnis präsentierte Dr. Anna Morales vom PVcomB auf der Photovoltaik-Weltkonferenz (WCPEC-7) im Juni 2018 in Hawaii. [...]
  • <p>Perowskit-basierte Tandem-Solarzellen erreichen nun Wirkungsgrade &uuml;ber 25%.</p>
    Science Highlight
    14.06.2018
    Wirkungsgrad von 25,2 % für Perowskit-Silizium-Tandem-Solarzelle zertifiziert
    Eine 1 cm2 Perowskit-Silizium-Tandem-Solarzelle erreicht einen Wirkungsgrad von 25,2%. Diese Neuigkeit wurde diese Woche auf einer Fachkonferenz in Hawaii, USA, vorgestellt. Die Zelle wurde gemeinsam vom HZB, der Universität Oxford und Oxford PV - The Perovskite CompanyTM  entwickelt. Das Fraunhofer-Institut für Solare Energiesysteme ISE hat den Wirkungsgrad zertifiziert. [...]
  • <p>Auch Fossilien wie dieser 250 Mio. Jahre alte Lystrosaurus-Sch&auml;del lassen sich mit Neutronentomographie zerst&ouml;rungsfrei untersuchen. </p>
    Science Highlight
    05.06.2018
    Neutronentomographie: Einblick ins Innere von Zähnen, Wurzelballen, Batterien und Brennstoffzellen
    Einen umfassenden Überblicksbeitrag über bildgebende Verfahren mit Neutronen hat ein Team am Helmholtz-Zentrum Berlin (HZB) und der Europäischen Spallationsquelle ESS im renommierten Fachjournal Materials Today (Impaktfaktor 21,6) publiziert.  Die Autoren berichten über die neuesten Entwicklungen in der Neutronentomographie. An Beispielen zeigen sie die Einsatzmöglichkeiten dieser zerstörungsfreien Methode auf. Neutronentomographien haben Durchbrüche in der Zahnmedizin, Kunstgeschichte, Pflanzenphysiologie, Paläobiologie, Batterieforschung oder Werkstoffanalyse ermöglicht. [...]
  • <p>Erstautorin ist die Mathematikerin Sibylle Bergmann, die im Rahmen von MiCo promoviert. </p>
    Science Highlight
    17.05.2018
    Publikation aus dem Helmholtz Virtuellen Institut Mico ausgezeichnet
    Das Helmholtz Virtuelle Institut MiCo bietet eine Plattform, auf der das Helmholtz-Zentrum Berlin mit Universitäten und anderen Partnern gemeinsam zu Mikrostrukturen für Dünnschichtsolarzellen forscht. Nun hat die Fachzeitschrift „Modelling and Simulation in Materials Science and Engineering“ eine Publikation, die im Rahmen von MiCo entstanden ist, als Highlight des Jahres 2017 ausgewählt. [...]
  • <p align="left">Laserlicht zum Schreiben und L&ouml;schen von Informationen: Ein starker Laserpuls bringt die atomare Ordnung in einer Legierung durcheinander und erzeugt magnetische Strukturen (links). Ein zweiter, schw&auml;cherer Laserpuls erm&ouml;glicht den Atomen, auf ihre angestammten Gitterpl&auml;tze zur&uuml;ckzukehren (rechts). </p>
    Science Highlight
    18.04.2018
    Laser erzeugt Magnet – und radiert ihn wieder aus
    Mit einem Laserstrahl in einer Legierung magnetische Strukturen zu erzeugen und anschließend wieder zu löschen – das gelang Forschern vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Kooperation mit dem Helmholtz-Zentrum Berlin (HZB) und der Universität von Virginia in Charlottesville, USA. Der überraschende Effekt ist zudem reversibel. Da Laser in der Industrie weit verbreitet sind, könnten sich für die Materialbearbeitung, für optische Technologien oder die Datenspeicherung ganz neue Perspektiven eröffnen. [...]
  • <p>Die magnetischen Nanoteilchen bilden im Innern der Zelle eine Kette, zeigt die Elektronenkryotomographie. </p>
    Science Highlight
    16.04.2018
    Experiment an BESSY II zeigt, wie der Kompass in magnetisch empfindlichen Bakterien funktioniert
    Bakterien sind ungeheuer vielfältig, nicht nur von Gestalt, sondern auch in ihren Eigenschaften. Magnetotaktische Bakterien können mit Hilfe von magnetischen Nanopartikeln das Erdmagnetfeld „spüren“.  Nun hat eine Kooperation aus spanischen Teams und einer Gruppe am Helmholtz-Zentrum Berlin den inneren Kompass in Magnetospirillum gryphiswaldense an der Synchrotronquelle BESSY II untersucht.  Die Ergebnisse können für die Entwicklung von biomedizinischen Anwendungen wie Nanorobotern und Nanosensoren nützlich sein. [...]
  • <p>Die Einblendung zeigt den typischen Aufbau eines Kristalls mit  Kesteritstruktur, im Hintergrund sind die Kristallstruktur und die Elementarzelle angedeutet. </p>
    Science Highlight
    29.03.2018
    Solarzellen aus Kesteriten: Germanium statt Zinn verspricht bessere optoelektronische Eigenschaften
    Durch gezielte Veränderungen der Zusammensetzung von Kesterit-Halbleitern lässt sich ihre Eignung als Absorbermaterial in Solarzellen verbessern. Wie ein Team am Helmholtz-Zentrum Berlin zeigte, gilt dies besonders für Kesterite, in denen Zinn durch Germanium ersetzt wurde. Die Wissenschaftlerinnen und Wissenschaftler untersuchten die Proben mit Hilfe von Neutronenbeugung am BER II und weiteren Methoden. Die Arbeit wurde für das Titelblatt der Zeitschrift CrystEngComm ausgewählt. [...]
  • <p>Ein Abbild des Strahlungsquellpunktes an einem Dipolmagneten im Twin Orbit Modus. Der zweite Orbit schlie&szlig;t sich nach drei Uml&auml;ufen und windet sich um den Standardorbit im Zentrum.</p>
    Science Highlight
    15.03.2018
    Neuer Betriebsmodus erstmals im Nutzerbetrieb an BESSY II erfolgreich getestet
    Die erste “Twin Orbit Nutzertestwoche” im Februar 2018 war ein großer Erfolg und verdeutlicht, dass der Modus bei weiterer Entwicklung zukünftig regelmäßig im Nutzerbetrieb angeboten werden könnte. Im Twin Orbit Modus kreisen Elektronenpakete auf zwei unterschiedlichen Umlaufbahnen, ohne sich zu stören. Der Vorteil: So lassen sich ganz unterschiedliche Anforderungen der Messgäste an die Zeitstruktur der Photonenpulse gleichzeitig erfüllen. Außerdem bietet der Twin Orbit Modus eine elegante Möglichkeit, beim Upgrade auf BESSY VSR lange und kurze Lichtpulse zu trennen.   [...]
  • <p>Mit Sonnenlicht k&ouml;nnen PCN-Nanolagen Wasser aufspalten. </p>
    Science Highlight
    28.02.2018
    Solarer Wasserstoff: Nanostrukturierung erhöht die Effizienz von Metall-freien Photokatalysatoren um den Faktor Elf
    Polymere Kohlenstoffnitride entfalten unter Sonnenlicht eine katalytische Wirkung, die sich für die Produktion von solarem Wasserstoff nutzen lässt. Allerdings ist die Effizienz dieser günstigen, metallfreien Materialien sehr gering. Durch einen einfachen Prozess ist es nun gelungen, ihre katalytische Wirkung um den Faktor elf zu erhöhen. Dies zeigte nun ein Team an der Tianjin-University in China mit einer Gruppe am Helmholtz-Zentrum Berlin. Die Arbeit wurde im Journal Energy & Environmental Science veröffentlicht. [...]
  • <p>Der GaAs-Nanokristall hat sich als Dodekaeder auf einer Silizium-Germanium-Nadel abgeschieden, zeigt diese Rasterelektronenmikroskopie. Zur besseren Unterscheidbarkeit sind die rhombischen Au&szlig;enfl&auml;chen eingef&auml;rbt. </p>
    Science Highlight
    22.02.2018
    Leuchtende Nanoarchitekturen aus Galliumarsenid
    Einem Team am HZB ist es gelungen, Nanokristalle aus Galliumarsenid auf winzigen Säulen aus Silizium und Germanium aufzuwachsen. Damit lassen sich auf der Basis von Siliziumchips sehr effiziente Bauelemente in für die Optoelektronik interessanten Frequenzbereichen realisieren. [...]
  • <p>Ein normaler HB-Bleistift und B&uuml;ropapier reichen aus, um - kombiniert mit einem leitf&auml;higen Kunststofflack- ein thermoelektrisches Element zu bauen. Bild. HZB</p>
    Science Highlight
    16.02.2018
    Verborgene Talente: Mit Bleistift und Papier Wärme in Strom umwandeln
    Thermoelektrische Materialien können Wärmeunterschiede zur Stromerzeugung nutzen. Nun gibt es eine preiswerte und umweltfreundliche Lösung, um sie mit einfachsten Zutaten herzustellen: Ein normaler Bleistift, Kopierpapier und ein leitfähiger Kunststofflack reichen aus, um eine Temperaturdifferenz über den thermoelektrischen Effekt in Strom umzuwandeln. Dies hat nun ein Team am Helmholtz-Zentrum Berlin demonstriert. [...]
  • <p>Schematische Darstellung der &ldquo;Streifen-Ordnung&rdquo;: Die blauen Streifen sind die geladenen, supraleitenden Bereiche. Abbildung mit &Auml;nderungen &uuml;bernommen von Physical Review Letters.</p> <p>&nbsp;</p>
    Science Highlight
    09.02.2018
    Nutzerforschung am BER II: Neue Erkenntnisse zur Hochtemperatur-Supraleitung
    Auch nach 30 Jahren Forschung bleiben viele Eigenschaften von Hochtemperatur-Supraleitern rätselhaft. So bildet sich in einigen Kuprat-Supraleitern eine magnetische “Streifen-Ordnung” aus. Ein dänisches Forscherteam hat diese Streifen mit Hilfe von Neutronen an den hochauflösenden Spektrometern FLEXX (HZB) und ThALES (ILL, Grenoble) genauer untersucht. Ihre Ergebnisse, die jetzt in Physical Review Letters veröffentlicht wurden, stellen das gängige Verständnis dieser „Streifen-Ordnung“ in Frage. Sie tragen dazu bei, das Phänomen der  Hochtemperatur-Supraleitung weiter zu entschlüsseln. [...]
  • <p>Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfl&auml;che werden Elektronen emittiert, die mit ARPES gemessen werden. Links betr&auml;gt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten l&auml;sst sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfl&auml;che leitend. </p>
    Science Highlight
    06.02.2018
    Streitfrage in der Festkörperphysik nach 40 Jahren entschieden
    Ein internationales Team um Prof. Oliver Rader hat an BESSY II gezeigt, dass  Samariumhexaborid kein topologischer Isolator ist. Durch einen Quanteneffekt wird dieses metallische Material bei sehr tiefen Temperaturen zu einem Kondo-Isolator, zeigt aber dennoch eine Restleitfähigkeit. Theoretische und erste experimentelle Arbeiten hatten zuvor darauf hingedeutet, dass dies auf einen topologischer Isolator schließen lässt. Das Team hat nun in Nature Communications eine überzeugende alternative Erklärung vorgestellt. [...]
  • <p>Der neue Baustein (links, roter Umriss) besteht aus zwei konvertierten Ausgangsmolek&uuml;len, die durch ein Silber-Atom (blau) verbunden sind. Dadurch entstehen komplexe, halbregul&auml;re &bdquo;Parkettmuster&ldquo; (rechts, Mikroskopbild). </p>
    Science Highlight
    23.01.2018
    Nutzerexperiment an BESSY II: Komplexe Parkettmuster, außergewöhnliche Materialien
    Einfache organische Moleküle bilden komplexe Materialien durch Selbstorganisation [...]
  • <p>Rasterelektronenmikroskopien der Perowskit-Solarzellen, links mit glatter, rechts mit mesopor&ouml;ser Grenzschicht. Zur Verdeutlichung wurden die Bilder halbseitig eingef&auml;rbt: Metalloxid (t&uuml;rkis), Grenzschicht (rot), Perowskit (braun), lochleitende Schicht (dunkelblau) sowie Goldkontakt. Die Skala zeigt 200 nm. </p>
<p> </p>
    Science Highlight
    18.01.2018
    Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
    Für die Stabilität des Wirkungsgrads von Perowskit-Solarzellen spielt ihre innere Architektur eine entscheidende Rolle. Dies zeigten nun zwei Forscherteams von Helmholtz-Zentrum Berlin und der TU München. Sie kombinierten dafür ihre Experimente mit numerischen Simulationen. [...]
  • <p>Vereinfachter Querschnitt durch eine Perowskit-Solarzelle: Die Perowskit-Schicht bedeckt nicht die gesamte Fl&auml;che, sondern weist &bdquo;L&ouml;cher&ldquo; auf. Allerdings bildet sich dort eine Schutzschicht, die einen Kurzschluss verhindert, zeigte das Team um Marcus B&auml;r.</p>
    Science Highlight
    15.01.2018
    Perowskit-Solarzellen: Es muss gar nicht perfekt sein
    Untersuchungen an BESSY II zeigen, warum selbst „löchrige“ Perowskit-Filme gut funktionieren [...]
  • <p>Das Bild (backscattered electron micrograph) zeigt CZTSe-Kristalle (grau) in einer Epoxid-Matrix (schwarz). </p>
    Science Highlight
    07.12.2017
    Solarenergie: Defekte in Kesterit-Halbleitern mit Neutronen untersucht
    Ein Forschungsteam am HZB hat die verschiedenen Defekt-Typen in Kesterit-Halbleitern erstmals genau charakterisiert. Dies gelang ihnen mit Hilfe von Neutronenstreuung am BER II und am Oak Ridge National Laboratory, USA. Die Ergebnisse zeigen Möglichkeiten zur gezielten Optimierung von Kesterit-Solarzellen auf. [...]
  • <p>Der MultiFLEXX-Detektor. Bild. HZB</p>
    Science Highlight
    01.12.2017
    Neutronen-Spektroskopie: Neues Detektormodul MultiFLEXX verzehnfacht Zählrate
    Am Drei-Achsen-Spektrometer FLEXX an der Neutronenquelle BER II steht ein neues Detektormodul für den Nutzerbetrieb zur Verfügung. Es misst viele Winkel und mehrere Energieüberträge gleichzeitig und ermöglicht so, etwa zehnmal so viele Daten pro Stunde zu messen. Die Neutronen-Nutzer können so ihre Messzeit optimal nutzen. [...]
  • <p>Die Illustration zeigt, wie Licht die gekoppelten Molek&uuml;le wieder in einzelne Molek&uuml;le zerlegt, die dann als n-Dotanden im organischen Halbleiter fungieren. </p>
    Science Highlight
    23.11.2017
    Licht ermöglicht „unmögliches“ n-Dotieren von organischen Halbleitern
    Einsatzbereiche in Leuchtdioden oder Solarzellen [...]
  • <p>Ein kurzer Laserpuls trifft auf die Dysprosium-Probe und ver&auml;ndert deren magnetische Ordnung. Dies geschieht deutlich rascher, wenn das Dysprosium vorher antiferromagnetisch (links) war als wenn es ferromagnetisch war (rechts). </p>
    Science Highlight
    06.11.2017
    Informationstechnologien der Zukunft: Antiferromagnetisches Dysprosium zeigt magnetisches Schalten mit weniger Energie
    HZB-Wissenschaftler haben einen Mechanismus identifiziert, mit dem sich möglicherweise schnellere und energiesparendere magnetische Speicher realisieren lassen. Sie verglichen, wie unterschiedliche magnetische Ordnungen im Seltenerd-Metall Dysprosium auf einen kurzen Laserpuls reagieren. Dabei fanden sie heraus, dass sich die magnetische Ordnung sehr viel schneller und mit deutlich geringerem Energieeinsatz verändern lässt, wenn die magnetischen Momente der einzelnen Atome nicht alle in dieselbe Richtung weisen (ferromagnetisch), sondern gegeneinander verdreht sind (antiferromagnetisch). Die Studie erschien am 6.11.2017 in der Fachzeitschrift Physical Review Letters und schmückt auch die Titelseite. [...]
  • <p>Hier geht es zur <a href="https://www.helmholtz-berlin.de/media/media/aktuell/print//lichtblick/202/hzb_lichtblick-33_oktober-2017_extern_web.pdf">Online-Ausgabe.</a></p>
    Science Highlight
    02.11.2017
    Neue HZB-Zeitung lichtblick erschienen
    Die Solarenergie ist eine stark unterschätzte Technologie und könne sich zum Grundpfeiler der Stromversorgung entwickeln, so lautet das Ergebnis einer Studie des Mercator Instituts. In der neuen HZB-Zeitung erfahren Sie, warum es in der Photovoltaik noch so viel Spielraum nach oben gibt. Jüngstes Beispiel sind Perowskit-Solarzellen, deren Wirkungsgrade sich rasant entwickeln. Drei Nachwuchsgruppen und mehrere Institute am HZB forschen daran, damit diese Solarzellen zu einer echten Alternative auf dem Markt werden können (Seite 2).   [...]
  • <p>Ab einem Magnetfeld von 23 Tesla erscheinen zus&auml;tzliche Flecken auf dem Neutronendetektor, die etwas &uuml;ber die neue magnetische Ordnung im Kristall verraten. </p>
    Science Highlight
    19.10.2017
    Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
    Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert.  Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht. [...]
  • <p>Der Bismut-Anteil nimmt von 0% (links) auf 2,2% (rechts) zu. Dadurch entsteht eine so genannte Bandl&uuml;cke in den Energieniveaus der Elektronen, zeigen die Messungen an BESSY II. </p>
<p></p>
    Science Highlight
    17.10.2017
    Topologische Isolatoren: Neuer Phasenübergang entdeckt
    Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen. [...]
  • <p>Schema des Photosystems II. </p>
    Science Highlight
    30.09.2017
    Neues Röntgenspektrometer ermöglicht es, Einzelschritte der Photosynthese zu beobachten
    HZB Wissenschaftler haben an BESSY II ein neuartiges Spektrometer entwickelt, das detaillierte Einblicke in Katalyse-Prozesse an Metall-Enzymen ermöglicht. In internationaler Zusammenarbeit gelang es ihnen, einzelne Prozesse im Photosystem II aufzuklären. Ihre Studie haben sie nun in der Zeitschrift Structural Dynamics veröffentlicht. Das Photosystem II gehört zur Photosynthese, die u.a. in Pflanzen und Algen stattfindet und Sonnenenergie in chemische Energie umwandelt. [...]
  • <p>Die Rastertunnelmikroskopie zeigt: Graphen w&ouml;lbt sich &uuml;ber den Goldclustern und bildet ein regelm&auml;&szlig;iges Muster, das an das Polster eines Chsterfield-Sofas erinnert. </p>
    Science Highlight
    18.09.2017
    Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
    Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren. [...]
  • <p></p>
    Science Highlight
    28.08.2017
    Solarer Wasserstoff mit „künstlichem Blatt“:
    Forschungsteam findet heraus, warum eine einfache Behandlung die Effizienz von preiswerten Metall-Oxid-Photoelektroden steigert [...]
  • <p>Schematischer Aufbau des Experiments.</p>
<p></p>
    Science Highlight
    25.08.2017
    Magnetische Speicher mit Licht schalten – Neue Erkenntnisse zu grundlegenden Mechanismen
    Ein Forscherteam hat am Helmholtz-Zentrum (HZB) zum ersten Mal gezeigt, wie das Schalten von magnetischen Materialeigenschaften per Laserlicht durch Wärmeeffekte beeinflusst wird und unter welchen Bedingungen der Schaltprozess abläuft. Zugleich entdeckten die Wissenschaftler eine bislang unbekannte Abhängigkeit von der Dicke der magnetischen Schicht: ein wichtiger Hinweis für das theoretische Verständnis von optisch steuerbaren Magnet-Datenspeichern. Die Arbeit wird heute in der Fachzeitschrift Scientific Reports publiziert.
    [...]
  • <p>Skizze eines &bdquo;Eierschalen-Nanoreaktors&ldquo;: zwei Ausgangsmolek&uuml;le, A und B, diffundieren aus der L&ouml;sung durch die Reaktorh&uuml;lle und reagieren am katalytischen Nanoteilchen (gelb) zum Produkt C.</p>
<p class="MsoPlainText"> </p>
    Science Highlight
    04.08.2017
    Erstmals Reaktionen zwischen zwei Molekülen in Nanoreaktoren modelliert
    Ein Theorie-Team aus dem HZB hat erstmals mathematisch beschrieben, wie zwei verschiedene Moleküle mit Hilfe von Nanoreaktoren miteinander reagieren. So genannte Nanoreaktoren sind winzige Systeme, die chemische Reaktionen beschleunigen, also wie ein Katalysator wirken. Die teilweise überraschenden Einsichten ermöglichen Vorhersagen, wie sich Reaktionen besser steuern lassen. Das Modell ist auf viele Forschungsfragen anwendbar, insbesondere auch auf Prozesse in Energiematerialien. [...]
  • <p>Zeitaufgel&ouml;ste Tomographie einer Lupinenwurzel (gelbgr&uuml;n), nachdem deuteriertes Wasser (D<sub>2</sub>O) von unten zugegeben wurde. Der Zeitverlauf zeigt die aufsteigende Wasserfront (H<sub>2</sub>O, dunkelblau), die durch das D<sub>2</sub>O von unten verdr&auml;ngt wird. Die komplette Abfolge ergibt ein Video. Urheber: Christian T&ouml;tzke &copy; Universit&auml;t Potsdam</p>
    Science Highlight
    25.07.2017
    Nutzerforschung am BER II: Lupinenwurzeln beim Trinken zugeschaut
    Lupinen bilden nicht nur bunte Blüten aus, sondern auch nahrhafte, eiweißreiche Bohnen. Wie diese Pflanzen mit ihren Wurzeln im Boden Wasser ziehen, hat nun ein Team der Universität Potsdam an der Berliner Neutronenquelle BER II erstmals in 3D beobachtet. Dafür verbesserten sie zusammen mit der HZB-Bildgebungsgruppe die Zeitauflösung der Neutronentomographie gleich um mehr als das Hundertfache: Alle zehn Sekunden erstellten sie eine detaillierte 3D-Aufnahme. Diese ultraschnelle Neutronentomographie ist auch für die Analyse dynamischer Prozesse in porösen Materialien generell geeignet. [...]
  • <p><!-- [if !mso]>

<![endif]--></p>
<p>Die Rasterelektronenmikrographie zeigt eine 10 Mikrometer gro&szlig;e fl&auml;chige Abscheidung. Die Silberkristalle sind etwa 100 Nanometer gro&szlig;. </p>
<p></p>
    Science Highlight
    24.07.2017
    Schreiben mit dem Elektronenstrahl: Jetzt auch Nanostrukturen aus Silber
    Ein internationales Team hat erstmals Nanostrukturen aus Silber mit einem Elektronenstrahl auf ein Substrat „geschrieben“. Silbernanostrukturen zeichnen sich durch ihre Fähigkeit aus, sichtbares Licht auf der Nanoskala zu konzentrieren. Mögliche Anwendungen liegen in der Sensorik (Nachweis von Molekülen), aber auch in der Datenverarbeitung mit Licht. [...]
  • Science Highlight
    19.07.2017
    Modern, kurz, informativ: Das HZB stellt sich in neuer Broschüre vor
    Eine Info-Broschüre, illustriert mit einer Kombination aus Zeichnungen und Fotografien, ist die neue Visitenkarte des HZB. Knapp und verständlich beschreibt sie die wichtigsten Forschungsschwerpunkte des Zentrums, stellt Großgeräte und Labore vor und zeigt, warum das HZB ein weltweit attraktiver Arbeitsort ist. [...]
  • <p>Klaus Habicht hat die Methode der Neutronen-Resonanz-Spin-Echo-Spektroskopie weiterentwickelt, um Gitterschwingungen in Proben zu vermessen. </p>
    Science Highlight
    19.06.2017
    HZB-Forscher hat sich habilitiert
    Dr. Klaus Habicht hat das Habilitationsverfahren an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam erfolgreich abgeschlossen. Damit erhält er auch offiziell die Lehrbefähigung für Physik der kondensierten Materie. Habicht hat seit 2011 zahlreiche Vorlesungen und Seminare an der Uni Potsdam gehalten, insbesondere zur Festkörperphysik und zu Methoden der Neutronenforschung. Am HZB leitet er die Abteilung für Methoden zur Charakterisierung von Transportphänomenen in Energiematerialien. [...]
  • <p>Ein Beispiel aus der Arbeit: Die &bdquo;operando-Radiographie" (A)&ndash;(C) zeigt, wie sich beim Entladen und Laden einer Lithium-Schwefel-Zelle Schwefelverbindungen (schwarze Strukturen) auf der Kohlenstoff-Kathode (grau) ablagern. </p>
    Science Highlight
    01.06.2017
    HZB-Publikation in der Festschrift des Journal of Physics D: Applied Physics
    Das „Journal of Physics D: Applied Physics“ hat eine Arbeit zur Röntgentomographie an unterschiedlichen Batterietypen als Highlight für die Veröffentlichung in einem exklusiven Sonderband ausgewählt. An der Publikation waren zwei Gruppen am HZB und ein Team der Justus-Liebig-Universität Gießen beteiligt. [...]
  • <p>Die Daten zeigen Bandl&uuml;cken und Wirkungsgrade von unterschiedlichen Perowskitmaterialien.  Dabei sinken die Wirkungsgrade bei gro&szlig;en Bandl&uuml;cken aufgrund des unerw&uuml;nschten Entmischungseffekts. </p>
    Science Highlight
    30.05.2017
    Trends und Wege zu hocheffizienten Perowskit-Solarzellen
    Perowskit-Solarzellen waren die Überraschung der letzten Jahre. Binnen kürzester Zeit konnte ihr Wirkungsgrad von knapp 10 auf 22 Prozent gesteigert werden. Kein anderes Photovoltaik-Material hat bisher solche rasche Fortschritte verzeichnet. Forschergruppen weltweit widmen sich deshalb der neuen Materialklasse. Eva Unger und Steve Albrecht aus dem Helmholtz-Zentrum Berlin (HZB) haben auf Einladung der renommierten Fachzeitschrift Journal of Materials Chemistry A die Trends in der Materialentwicklung von Perowskithalbleitern der letzten Jahre ausgewertet. Dabei haben sie Chancen und Begrenzungen dieser Halbleiterklasse in Abhängigkeit von ihrem Absorptionsbereich in einem Überblicksartikel zusammengefasst. [...]
  • <p>Die Ti<sub>4</sub>O<sub>7</sub>-Nanopartikel weisen gro&szlig;e Poren auf, zeigt die Elektronenmikroskopieaufnahme. <strong><a href="http://onlinelibrary.wiley.com/doi/10.1002/adfm.201701176/abstract;jsessionid=F0393DC7BB4AAE76B24CFD675C8CC430.f03t04   " class="Extern">adfm.201701176</a></strong></p>
    Science Highlight
    17.05.2017
    Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
    Ein Team am Helmholtz-Zentrum Berlin (HZB) hat erstmals Nanopartikel aus einer Titanoxidverbindung (Ti4O7) mit extrem großen Oberflächen hergestellt und in Lithium-Schwefelbatterien als Kathodenmaterial getestet. Das hochporöse Nanomaterial besitzt eine hohe Speicherkapazität, die über viele Ladezyklen annähernd stabil bleibt.  [...]
  • <p>Die Nanodiamanten in L&ouml;sung wurden mit unterschiedlichen Molek&uuml;lgruppen modifiziert. </p>
    Science Highlight
    26.04.2017
    Nanodiamanten als Energiematerialien: kleine „Anhänger“ mit großer Wirkung
    Ein internationales Forscherteam hat neue Einblicke in die Wechselwirkungen zwischen Nanodiamanten und Wassermolekülen gewonnen. Durch Versuche an Synchrotronquellen konnten sie feststellen, dass kleine Molekülgruppen auf den Nanodiamantoberflächen großen Einfluss auf das Wasserstoffbrücken-Netzwerk ausüben. Dies könnte insbesondere für (photo)-katalytische Anwendungen interessant sein, zum Beispiel für die Produktion von solaren Brennstoffen mit Kohlendioxid und Licht. [...]
  • <p>Die Experimente zeigen: Lichtpulse k&ouml;nnen Wasserstoffkerne abl&ouml;sen, ohne weitere Bindungen im Molek&uuml;l zu zerst&ouml;ren. </p>
<p></p>
    Science Highlight
    07.04.2017
    Protonentransfer: Forscher finden molekularen Schutzmechanismus gegen lichtinduzierte Schädigungen
    Ein internationales Team aus Forschenden des Helmholtz-Zentrum Berlin (HZB) sowie aus Schweden und den USA hat einen Mechanismus untersucht, der Biomoleküle wie die Erbsubstanz DNA gegen Schädigung durch Licht schützt. Sie beobachteten, wie die Energie der einfallenden Photonen im Molekül aufgenommen wird ohne wichtige Bindungen des Biomoleküls zu beschädigen. Die Experimente fanden am Freie Elektronen-Laser LCLS in Kalifornien und an der Synchrotronquelle BESSY II des HZB in Berlin statt, wo mit der Methode der resonanten inelastischen Röntgenstreuung, RIXS, ein sehr empfindliches Messverfahren bereit steht. [...]
  • <p>Die Abbildung zeigt, dass Beimischungen von Chrom die katalytische Wirkung erh&ouml;hen (sichtbar an der Stromdichte, die von rot zu gr&uuml;n ansteigt). </p>
    Science Highlight
    23.03.2017
    Preiswerte Katalysatoren finden und verstehen: Auf das Eisen kommt es an
    Ein Team hat mehr als hundert Eisen-Nickel-Katalysatoren mit unterschiedlichen Beimischungen von Chrom untersucht. Dabei analysierten sie an BESSY II auch die elektronischen Strukturen der einzelnen Elemente. Sie zeigten, dass ein steigender Chromanteil vor allem die elektronische Struktur des Eisens beeinflusst, die wichtig für die Wirkung als Katalysator ist. Die Ergebnisse dieser Hochdurchsatzstudie helfen bei der wissensbasierten und gezielten Suche nach besseren Katalysatoren. [...]
  • <p>Nanostrukturen fangen das Licht ein, zeigt diese Illustration auf dem Titel von Advanced Optical Materials. </p>
    Science Highlight
    14.03.2017
    Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad
    Ultradünne CIGSe-Solarzellen sparen Material und Energie bei der Herstellung. Allerdings sinkt auch ihr Wirkungsgrad. Mit Nanostrukturen auf der Rückseite lässt sich dies verhindern, zeigt eine Forschungsgruppe vom HZB zusammen mit einem Team aus den Niederlanden. Sie erzielten bei den ultradünnen CIGSe-Zellen einen neuen Rekord bei der Kurzschlussstromdichte. [...]
  • <p>Robert Seidel leitet die Nachwuchsgruppe Operando Grenzfl&auml;chen-Photochemie. </p>
    Science Highlight
    09.03.2017
    Hochempfindliche Methode zum Nachweis von Ionen-Paaren in wässriger Lösung
    Wissenschaftlerinnen und Wissenschaftler des Helmholtz-Zentrum Berlin, der Freien Universität Berlin, der Universität Heidelberg und der Universität für Chemie und Technologie Prag haben einen zuvor nur theoretisch vorhergesagten, speziellen Elektronentransfer in einer wässrigen Salz-Lösung experimentell nachgewiesen. Von den Ergebnissen erhoffen sie sich eine extrem sensitive Methode zum Nachweis von Ionenpaaren in Lösungen. [...]
  • <p>Die  PFIA-Molek&uuml;le ordnen sich mit ihrem wasserabweisenden R&uuml;ckgrat (schwarze Linie) so an, dass die wasserfreundlichen Seitenketten zueinander zeigen und nanometergro&szlig;e Wasserkan&auml;le bilden: Jede Seitenkette besitzt dabei zwei Andockstellen (gelbe und rote Kreise) f&uuml;r Wasserstoff-Ionen (H+). Diese Andockstellen bestehen aus S&auml;uregruppen, die in der Lupe gezeigt werden.  </p>
    Science Highlight
    19.12.2016
    Brennstoffzellen mit PFIA-Membranen:
    Experimente an BESSY II zum Wassermanagement geben Hinweise auf weitere Optimierung von Brennstoffzellen  [...]
  • <p>Die zweiatomaren Nickel-Ionen (grau) sind bei tiefen Temperaturen in einer RF-Ionenfalle gefangen, dabei dient kaltes Helium-Gas (blau) zur W&auml;rmeabfuhr. Das magnetische Feld richtet die Ionen aus.</p>
    Science Highlight
    28.11.2016
    Neuer Rekord an BESSY II: Zehn Millionen Ionen in einer Ionen-Falle erstmals bis auf 7,4 Kelvin gekühlt
    Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt [...]
  • <p>Die R&ouml;ntgenreflektivit&auml;t des Mo/Si Multilagenspiegels wird durch den um &Delta;<em>t</em> zeitversetzten Laserpuls stark ver&auml;ndert. </p>
    Science Highlight
    14.11.2016
    Methodenentwicklung an BESSY II: Standard-Röntgenspiegel nun auch für ultraschnelle Experimente einsetzbar
    Elektronische, magnetische und strukturelle Prozesse in Energiematerialien finden auf Zeitskalen zwischen Femtosekunden und 100 Pikosekunden statt. Um solche Prozesse zu beobachten, wird die Probe mit einem ersten Lichtpuls angeregt und dann mit einem zeitlich verzögerten Abfragepuls „abgetastet“. Dabei ist es allerdings entscheidend, dass der zeitliche Überlapp beider ultrakurzen Lichtpulse exakt bekannt ist. Nun hat ein Team vom HZB und der Universität Potsdam eine neue und überraschend simple Lösung gefunden, um auch bei Lichtpulsen mit unterschiedlichen Wellenlängen, z.B. aus dem Infrarot- und Röntgenbereich, den zeitlichen Überlapp genau zu messen: Sie setzen dafür einen Standard-Röntgenspiegel ein, der auch sonst in BESSY II  verwendet wird. Der Spiegel besteht aus alternierenden Nanolagen von Molybdän und Silizium, die durch Laseranregung dynamisch ihre Dicke ändern, was sich auf die Reflektivität des Spiegels auswirkt. [...]
  • <p>Ein Laserpuls versetzt die gel&ouml;sten Molek&uuml;le in einen angeregten elektronischen Zustand. Dann kann die Bindungsenergie der angeregten Elektronen gemessen werden. Solche Laserexperimente sind nur im Ultrahochvakuum m&ouml;glich. </p>
    Science Highlight
    19.10.2016
    Methodenentwicklung am HZB: Ionische Flüssigkeiten vereinfachen Laserexperimente mit flüssigen Proben
    Ein HZB-Team hat eine neue Methode entwickelt, um Moleküle in Lösung mit Laserexperimenten analysieren zu können. Dies war bisher schwierig, weil sich dafür die Probe im Vakuum befinden muss, Flüssigkeiten unter Vakuum aber verdampfen.  Dem Team ist es nun gelungen, das Lösungsmittel durch eine ionische Flüssigkeit zu ersetzen, die im Vakuum nicht verdampft: So können die  Moleküle mit einem Laserpuls angeregt werden, und das Verhalten der angeregten Zustände im Vakuum gemessen werden. Dies gibt Aufschluss über physikalische und chemische Prozesse in neuartigen flüssigen Energie-Materialien, wie sie etwa in organischen Solarzellen oder Katalysatoren zum Einsatz kommen. [...]
  • <p>Unter dem Eisen-Nickel-Film befindet sich ein supraleitender Punkt (gestricheltes Quadrat). X-PEEM-Messungen zeigen die magnetischen Dom&auml;nen innerhalb der Eisen-Nickel-Legierung vor (links) und nach dem Einschreiben (rechts). In dieser Probe ist ein Monopol entstanden (Pfeile, rechts). </p>
    Science Highlight
    10.10.2016
    Zukünftige Informationstechnologien: Neues Materialsystem ermöglicht lokale magnetische Monopole - Ausblick auf energieeffiziente Datenspeicher
    Ein internationales Team hat an BESSY II einen neuen Weg gefunden, um exotische magnetische Muster wie Monopole oder Wirbel in einer dünnen magnetischen Schicht zu erzeugen. Dies eröffnet neue Möglichkeiten für schnelle und energieeffiziente Datenspeicher. Das neue Materialsystem besteht aus einer supraleitenden Mikrostruktur, die mit einem extrem dünnen ferromagnetischen Film beschichtet ist. Ein kurzfristig angelegtes äußeres Magnetfeld regt Ströme in den supraleitenden Bereichen an. Durch diese Ströme werden die gewünschten magnetischen Muster stabil in die ferromagnetische Dünnschicht eingeschrieben. Die Ergebnisse sind in Advanced Science publiziert. [...]
  • <p>SEM &ndash; Abbildung eines metallischen Nano Netzwerks in (links) periodischer  Aufbau und  eine optische Abbildung einer fraktalen Struktur (rechts). </p>
    Science Highlight
    27.09.2016
    Nanotechnologie für Energie-Materialien: Elektroden wie Blattadern
    Nano-dimensionierte Metalldrähte finden zunehmend Interesse als leitfähige Elemente für die Herstellung transparenter Elektroden. Zum Einsatz kommen solche transparenten Elektroden in Solarzellen oder Touchscreen-Panels. Zu den wichtigsten Parametern einer Elektrode für die Anwendung in der Photovoltaik gehört neben einer hohen elektrischen Leitfähigkeit eine exzellente optische Durchlässigkeit. Ein internationales Team um den HZB-Wissenschaftler Prof. Dr. Michael Giersig hat kürzlich demonstriert, dass metallische Netze, die fraktal-ähnliche Nanostrukturen besitzen, andere metallische Netze in ihrer Nützlichkeit für die genannten Anwendungen übertreffen. Diese Ergebnisse wurden jetzt in der jüngsten Ausgabe des renommierten Journals Nature Communications veröffentlicht. [...]
  • <p>Das Expertensystem analysierte die Datens&auml;tze von 364 Kristallen aus einem bestimmten Protein, die mit unterschiedlichen Fragmentmolek&uuml;len getr&auml;nkt waren.</p>
    Science Highlight
    26.09.2016
    Methodenentwicklung an BESSY II: Automatische Auswertung beschleunigt die Suche nach neuen Wirkstoffen
    Die MX-Beamlines der Röntgenquelle BESSY II am HZB sind auf die hochautomatisierte Strukturanalyse von Proteinkristallen spezialisiert. Mit bereits über 2000 bestimmten Proteinstrukturen sind sie in Deutschland mit Abstand die produktivsten Beamlines dieser Art und werden von Forschung und Industrie stark nachgefragt. Nun haben Teams der Philipps-Universität Marburg und des HZB auch die Auswertung der Datensätze automatisiert: Das neu entwickelte Computerprogramm (Expertensystem) identifiziert aus den Rohdaten einer Röntgenstrukturanalyse diejenigen Molekülfragmente, die sich als Startpunkt für die Entwicklung eines Wirkstoffs eignen. An einer Serie von 364 Proben demonstrierten die Kooperationspartner, dass das Expertensystem zuverlässig arbeitet und die Suche nach einem passenden Wirkstoff beschleunigen kann. Die Arbeit ist im Journal Structure publiziert. [...]
  • <p>Cover: WILEY-VCH Verlag</p>
    Science Highlight
    15.09.2016
    Handbuch zu Charakterisierungsmethoden von Dünnschicht-Solarzellen unter Mitwirkung von HZB-Forschern erschienen
    Im August 2016 ist die zweite, erweiterte Auflage des Fachbuchs „Advanced Characterization Techniques for Thin-Film Solar Cells“ beim renommierten WILEY-VCH Verlag erschienen. Mit-Herausgeber ist der HZB-Forscher Dr. Daniel Abou-Ras; insgesamt elf Autorinnen und Autoren aus dem HZB haben Beiträge für dieses Nachschlagewerk verfasst. Es liefert einen umfassenden Überblick über zahlreiche Charakterisierungs- und Modellierungstechniken, die für Solarzellenmaterialien und -bauelemente angewandt werden. [...]
  • <p>Ein Ausschnitt aus dem Kristallgitter der Probe verdeutlicht, dass die Spins widerspr&uuml;chlichen Anforderungen ausgesetzt sind. Die gr&uuml;nen und roten Balken zwischen Gitterpl&auml;tzen symbolisieren ferromagnetische Wechselwirkungen. Die blauen Balken dagegen die antiferromagnetischen. </p>
    Science Highlight
    25.07.2016
    Exotischer Materiezustand: "Flüssige" Quantenspins bei tiefsten Temperaturen beobachtet
    Ein Team am HZB hat experimentell eine sogenannte Quanten-Spinflüssigkeit in einem Einkristall aus Kalzium-Chrom-Oxid nachgewiesen. Dabei handelt es sich um einen neuartigen Materiezustand. Das Besondere an dieser Entdeckung: Nach gängigen Vorstellungen war das Quantenphänomen in diesem Material gar nicht möglich. Nun liegt eine Erklärung vor. Die Arbeit erweitert das Verständnis von kondensierter Materie und könnte auch für die zukünftige Entwicklung von Quantencomputern von Bedeutung sein. Die Ergebnisse sind nun in Nature Physics veröffentlicht. [...]
  • <p>BFO hat eine Perowskit-Kristallstruktur. </p>
    Science Highlight
    22.06.2016
    Neuer Effekt beim Laserinduzierten Umschalten von Bits für höhere Speicherdichten
    Ein internationales Team hat an BESSY II eine neue Möglichkeit entdeckt, wie sich die Informationsdichte in Speichermedien künftig weiter erhöhen lässt. Sie beschossen dafür das ferromagnetische Material BaFeO3 (BFO) mit kurzen Laserpulsen, welche einen kurzzeitigen Phasenübergang im Material bewirken. Das ermöglichte es, ansonsten stabile magnetische Regionen sehr lokal umzuschalten. Dies konnten sie mit ultrakurzen Röntgenpulsen an der Femtospex-Anlage nachweisen. Dieser Effekt könnte einen neuen Weg eröffnen, um Daten zu speichern. Die Ergebnisse sind nun in Phys. Rev. Letters publiziert. [...]
  • <p>Die Grafik veranschaulicht, wie Jodatome (lila) zwischen das organische Netz und die metallische Unterlage wandern und so die Haftung reduzieren. </p>
    Science Highlight
    22.06.2016
    Aus der Forschung der Nutzer: Sanftes Entkoppeln legt Nanostrukturen frei
    Am Synchrotronspeicherring BESSY II des Helmholtz-Zentrum Berlin (HZB) hat ein internationales Team einen raffinierten Weg gefunden, um organische Nanostrukturen von Metalloberflächen abzukoppeln. Die Messungen belegen: Durch Einschleusen von Jod erhält man ein Netz aus organischen Molekülen, die fast wie ein freistehendes Netz erscheinen. Dies könnte ein Weg sein, um Nanostrukturen von Metalloberflächen auf andere Oberflächen zu übertragen, die sich besser für molekulare Elektronik eignen. Die Ergebnisse sind in der Zeitschrift „Angewandte Chemie“ publiziert. [...]
  • <p>Die Illustration zeigt, wie die Goldatome unter dem Graphen sitzen. </p>
    Science Highlight
    16.06.2016
    Graphen auf Halbleitersubstrat als Kandidat für Spintronik
    Graphen auf Siliziumkarbid könnte ein interessantes Materialsystem für künftige spintronische Bauelemente werden.  Durch eingeschleuste Goldatome kann die Spin-Bahn-Wechselwirkung punktuell so stark erhöht werden, dass sich die Spins kontrollieren lassen. Dies zeigen erste Ergebnisse an BESSY II, die nun in den Applied Physics Letters veröffentlicht sind.  [...]
  • <p>Die Membran besitzt Poren im Abstand von 105 Nanometern, die als Haftstellen f&uuml;r die magnetischen Dom&auml;nenw&auml;nde wirken. </p>
    Science Highlight
    14.06.2016
    Spintronik: Effizientes Materialsystem für die wärmeunterstützte Datenspeicherung
    Ein HZB-Team hat Dünnschichten aus Dysprosium-Kobalt über einer nanostrukturierten Membran an BESSY II untersucht. Sie zeigten, dass eine Erwärmung auf nur 80 Grad Celsius ausreicht, um die Magnetisierung von winzigen Nano-Regionen neu auszurichten. Dies ist weit weniger als bislang für die wärmeunterstützte magnetische Datenspeicherung (Heat Assisted Magnetic Recording) nötig war. Ziel dieser Forschung sind schnelle und energieeffiziente Datenspeicher, die mehr Informationen auf kleinster Fläche speichern. Die Ergebnisse sind in dem neuen Fachjournal Physical Review Applied veröffentlicht. [...]
  • <p>Biostruktur des Dentins: Tubuli und Netz von Kollagenfasern, in denen mineralische Nanopartikel eingebettet sind. <span>Charit&eacute;</span> &ndash; Universit&auml;tsmedizin Berlin</p>
    Science Highlight
    02.06.2016
    Nutzerforschung an BESSY II: Was Zähne fester macht als jedes bekannte künstliche Material
    Dentin gilt als einer der beständigsten biologischen Stoffe überhaupt. Wie Wissenschaftler der Charité–Universitätsmedizin Berlin nun zeigen konnten, ist es in seiner Zusammensetzung langlebiger als jedes künstlich geschaffene Material. Der Grund dafür liegt in seinen winzigen Nanostrukturen und hier insbesondere im Wechselspiel der einzelnen Komponenten. Die präzise Interaktion zwischen Proteinfasern und mineralischen Nanopartikeln ist dafür verantwortlich, dass Dentin ausgesprochen hohem Druck standhalten kann. Dies haben Messungen an der Synchrotronquelle BESSY II des Helmholtz-Zentrums Berlin nachgewiesen. Die Ergebnisse sind jetzt in der Fachzeitschrift Chemistry of Materials veröffentlicht. [...]
  • <p>Durch die Kombination von zwei unterschiedlichen Methoden (RIXS und Fluoreszenzspektroskopie) konnte das Team die elektronischen Zust&auml;nde der Probe im Detail vermessen. </p>
    Science Highlight
    11.05.2016
    Chemie von Eisen in wässriger Lösung entschlüsselt
    Ein HZB-Team hat an der Synchrotronquelle BESSY II zwei unterschiedliche Methoden kombiniert, um mehr Informationen zur Chemie von Übergangsmetallverbindungen in Lösung zu gewinnen. Solche Verbindungen können als Katalysatoren in Energiematerialien gewünschte Reaktionen befördern, sind aber bislang noch nicht vollständig verstanden.  Sie zeigten an einem einfachen Modellsystem aus Eisen in Wasser, wie sich aus dem systematischen Vergleich sämtlicher elektronischer Wechselwirkungsprozesse ein detailliertes Bild der elektronischen Zustände ermitteln lässt. Die Ergebnisse sind im Open Access Journal von Nature, den Scientific Reports, publiziert. [...]
  • <p>Die Skizze zeigt die charakteristische Spin-Ausrichtung (Pfeile) von Elektronen in einem topologischen Isolator (unten). Ein zirkular polarisierter Laserpuls dreht die Spins aus der Oberfl&auml;chenebene der Probe heraus (Mitte). Dies l&auml;sst sich mit einem linear polarisierten zweiten Puls nachweisen (oben).</p>
    Science Highlight
    29.04.2016
    Spintronik für künftige energieeffiziente Informationstechnologien: Spin-Ströme in Topologischen Isolatoren kontrolliert
    Ein internationales Team um den HZB-Forscher Jaime Sánchez-Barriga hat gezeigt, wie sich in Proben aus einem Topologischen Isolator-Material spinpolarisierte Ströme gezielt in Gang setzen lassen. Zudem konnten sie die Ausrichtung der Spins in diesen Strömen kontrollieren. Damit demonstrierten sie, dass sich diese Materialklasse dafür eignet, mithilfe von Spins Daten zu verarbeiten. Die Arbeit ist in der renommierten Zeitschrift Physical Review B erschienen und wurde als "Editor's Suggestion" ausgezeichnet. [...]
  • <p>Die Messergebnisse (Photonenenergie versus Zeit) belegen Defekte (unteres Signal), die nach etwa 120 Minuten rasch verschwinden. Dies entspricht dem &Uuml;bergang von der kupferarmen Phase in die kupferreiche Phase.</p>
    Science Highlight
    21.04.2016
    Dünnschicht-Solarzellen: Wie Defekte in CIGSe-Zellen entstehen und verschwinden
    Kupferanteil spielt entscheidende Rolle

    Eine internationale Kollaboration aus deutschen, israelischen und britischen Teams hat die Abscheidung von einzelnen Chalkopyrit-Dünnschichten untersucht. An der Röntgenquelle BESSY II des Helmholtz-Zentrums Berlin konnten sie beobachten, wann sich während der Deposition bestimmte Defekte bilden und unter welchen Umständen sie ausheilen. Die Ergebnisse geben Hinweise für die Optimierung der Herstellungsprozesse und sind nun in „Energy & Environmental Science“ publiziert. [...]

  • <p>Das Bild zeigt, wie Sonnenlicht zun&auml;chst  ein Farbstoffmolek&uuml;l anregt und ein Elektron freisetzt. Dieses Elektron kann jedoch an der Grenzfl&auml;che zwischen Farbstoff- und ZnO-Halbleiterschicht eingefangen werden. </p>
    Science Highlight
    13.04.2016
    Rätsel um Effizienzverlust von Zinkoxid-basierten Farbstoffsolarzellen aufgeklärt
    Um Sonnenenergie in Strom oder solare Brennstoffe umzuwandeln, benötigt man spezielle Materialsysteme. Zum Beispiel solche, die aus organischen und anorganischen dünnen Schichten bestehen. Bei der Umwandlung der Sonnenenergie spielen Prozesse an den Grenzflächen dieser Schichten eine entscheidende Rolle. Nun hat ein HZB-Team um Prof. Emad Aziz erstmals mit ultrakurzen Laserpulsen direkt beobachtet, wie sich zwischen den organischen Farbstoffmolekülen und einer Zinkoxid-Halbleiterschicht Grenzflächenzustände bilden, in denen Ladungsträger eingefangen werden. Dies erklärt, warum ZnO-Farbstoffsolarzellen aktuell hinter den Erwartungen zurückbleiben. Die Ergebnisse sind im Rahmen einer Zusammenarbeit mit der australischen Monash-University am Joint Lab vom Helmholtz-Zentrum Berlin (HZB) und der Freien Universität Berlin (FU) entstanden und im Open Access Magazin von Nature, den Scientific Reports, online publiziert. [...]
  • <p>Die dreidimensionale Netzwerkstruktur des ultrapor&ouml;sen und flexiblen Materials DUT-49 besitzt eine hohe Speicherkapazit&auml;t f&uuml;r Methangas. &copy; TU Dresden, Prof. AC1</p>
    Science Highlight
    08.04.2016
    Energiespeichermaterialien unter Druck
    Überraschendes Ergebnis an BESSY II: Hoher Druck kann Gasaufnahmekapazität von MOFs zunächst verringern [...]
  • <p>Die Skizze zeigt den Aufbau der Probe: die n-dotierte Siliziumschicht (schwarz), eine d&uuml;nne Siliziumoxidschicht (grau), eine Zwischenschicht (gelb) und schlie&szlig;lich die Schutzschicht (braun), auf der die Katalysatorpartikel mit dem Elektrolyten (gr&uuml;n) in Kontakt kommen. </p>
    Science Highlight
    21.03.2016
    Solare Brennstoffe: Raffinierte Schutzschicht für das „Künstliche Blatt”
    Ein Team am HZB-Institut für Solare Brennstoffe hat ein Verfahren entwickelt, um empfindliche Halbleiter für die solare Wasserspaltung („Künstliches Blatt“) mit einer organischen transparenten Schutzschicht zu versehen. Die extrem dünne Schutzschicht aus vernetzten Kohlenstoffatomen ist stabil und leitfähig und mit Katalysator-Nanopartikeln aus Metalloxiden bedeckt. Diese beschleunigen die Spaltung von Wasser unter Lichteinstrahlung. Die so hergestellte Hybridstruktur zeigt als Photoanode für die Sauerstoffentwicklung Stromdichten von über als 15 mA/cm2. Die Ergebnisse sind nun in Advanced Energy Materials veröffentlicht. [...]
  • <p>Das Team konnte erstmals mit der Methode der inelastischen R&ouml;ntgenstreuung beobachten, wie der Aufbau von Wasserstoffbr&uuml;cken die C=O Bindung im Azeton-Molek&uuml;l ver&auml;ndert.  </p>
<p></p>
    Science Highlight
    16.03.2016
    Die Vermessung der Chemie: Lokaler Fingerabdruck von Wasserstoffbrücken-Bindungen experimentell erfasst
    Ein Team aus dem Helmholtz-Zentrum Berlin konnte nun erstmals messen, wie neue Verbindungen zwischen Molekülen diese beeinflussen: Sie haben aus Messdaten an der Swiss Lightsource des Paul-Scherrer-Instituts die „Energielandschaft“ von Azeton-Molekülen rekonstruiert und so experimentell den Aufbau von Wasserstoffbrücken zwischen Azeton- und Chloroform-Molekülen nachgewiesen. Die Ergebnisse sind in Nature Scientific Reports veröffentlicht  und helfen, grundlegende Phänomene der Chemie zu verstehen. [...]
  • <p>In reinem Bismut-Selenid (links) gibt es keine Bandl&uuml;cke. Bei Zugabe von magnetischem Mangan (4%, 8%) bildet sich jedoch eine Bandl&uuml;cke (gestrichelte Linien). Dadurch verschwindet die elektrische Leitf&auml;higkeit. Dieser Effekt ist sogar bei Raumtemperatur nachweisbar und hat wider Erwarten nichts mit dem Magnetismus des Mangans zu tun, der sich erst unterhalb von 10 Kelvin (minus 263 Grad Celsius) einstellt. </p>
    Science Highlight
    19.02.2016
    Topologische Isolatoren: Magnetismus spielt keine Rolle beim Zusammenbruch der Leitfähigkeit
    Werden Topologische Isolatoren mit magnetischen Fremdatomen dotiert, dann verliert ihre Oberfläche ihre Leitfähigkeit. Doch anders als bisher angenommen, spielt dabei der Magnetismus, der Fremdatome keine Rolle. Dies zeigten Experimente an der Synchrotronquelle BESSY II des HZB, die nun in Nature Communications veröffentlicht sind.  Das Verständnis dieser Effekte ist eine wichtige Voraussetzung, um Topologische Isolatoren in der Informationstechnologie anwenden zu können. [...]
  • <p>Die Skizze zeigt den Aufbau der beiden Metalloxidschichten. Die interessanten neuen Eigenschaften zeigen sich genau an der Grenzfl&auml;che. </p>
    Science Highlight
    04.02.2016
    Sandwiches aus Metalloxiden: Wie sich Eigenschaften der Grenzflächen manipulieren lassen
    Eine französisch-deutsche Kooperation hat ein Schichtsystem aus Übergangsmetalloxiden an BESSY II untersucht. Dabei entdeckten die Wissenschaftler eine neue Möglichkeit, um Eigenschaften der Grenzfläche gezielt zu verändern, zum Beispiel den Ladungstransfer oder die magnetischen Eigenschaften. Möglicherweise könnte man damit sogar neue Formen der Hochtemperatur-Supraleitung erzeugen. [...]
  • <p>Skizziert ist eine Nanoinsel aus Graphen, in die Eisen-Stickstoff-Komplexe eingelagert sind. Katalytisch wirksam sind FeN<sub>4</sub>-Komplexe (orange markiert). </p>
    Science Highlight
    27.01.2016
    Alternative zu Platin: Katalysator aus Eisen-Stickstoff-Komplexen in Graphen
    Mit einem neuen Präparationsverfahren haben Teams am HZB und der TU Darmstadt ein preiswertes Katalysatormaterial für Brennstoffzellen hergestellt und eingehend analysiert: Es besteht aus Eisen-Stickstoff-Komplexen, die in Graphen-Inseln von nur wenigen Nanometern im Durchmesser eingebettet sind. Dabei sorgen nur die FeN4-Zentren für die hervorragende katalytische Wirkung, die an Platin heranreicht. Die Ergebnisse lassen sich auch für die solare Wasserstoffproduktion nutzen und sind im Journal of the American Chemical Society veröffentlicht. [...]
  • <p>Flexible CIGS-Module. </p>
    Science Highlight
    26.01.2016
    Wettlauf der Solarstrom-Technologien: Dünnschicht-Photovoltaik holt auf
    ZSW und HZB legen aktuelle Daten vor – neue Chancen für die EU-Solarindustrie [...]
  • <p>Vertikaler Schnitt durch einen Quadrupol-Magneten: Schwarz: Feldverteilung in einem definierten vertikalen Abstand zur Mittelebene. Magenta: Elektronenbahnen mit unterschiedlichen Startbedingungen. </p>
    Science Highlight
    20.01.2016
    Elektronenbahnen in komplexen Magnetfeldern jetzt schneller berechenbar
    Um künftig noch leistungsstärkere Synchrotronquellen zu konzipieren, ist es wichtig, die Elektronenbahnen  in komplexen Magnetstrukturen mit hoher Präzision zu simulieren. Dies erfordert jedoch sehr lange Rechenzeiten. Nun hat ein Team am HZB die Elektronenbahnen mit einem neuen Algorithmus simuliert und damit die erforderliche Rechenzeit verkürzen können. Dies beschreiben sie in Physical Review Special Topics Accelerator & Beams. [...]
  • <p>Schema des Aufbaus der Tandem-Zelle. </p>
    Science Highlight
    07.01.2016
    Optimale Bandlücke für hybride Tandem-Solarzelle aus Silizium und Perowskit
    Tandemsolarzellen aus Silizium und Perowskit gelten als Hoffnungsträger für zukünftige hocheffiziente Solarmodule. Ein Team um den Perowskit-Pionier Henry Snaith, Universität Oxford, hat nun mit Bernd Rech und Lars Korte vom Helmholtz-Zentrum Berlin gezeigt, dass Wirkungsgrade von bis zu 30 Prozent für eine Perowskit-Silizium-Tandemzelle erreichbar sind. Sie haben dafür die chemische Zusammensetzung der Perowskit-Schicht systematisch variiert und so eine Bandlücke von 1,75 Elektronenvolt realisiert, die für die Energieumwandlung optimal ist. Ihre Arbeit ist nun in „Science“ publiziert. [...]
  • <p>Wie sich die Kristallite in einer CuInSe<sub>2</sub>-D&uuml;nnschicht orientieren, l&auml;sst sich auch mit Raman-Mikrospektroskopie kartieren. </p>
    Science Highlight
    18.12.2015
    Alternative Methode, um Mikrostrukturen in Polykristallen darzustellen
    Auch mit Raman-Mikrospektroskopie  lässt sich ermitteln, wie Kristallorientierungen in polykristallinen Materialien über größere Bereiche verteilt sind. Dieses Verfahren kann als Alternative zur Rückstreuelektronenbeugung im Rasterelektronenmikroskop herangezogen werden. Dass beide Verfahren auf Flächen von mehreren hundert Quadratmikrometern zu vergleichbaren Ergebnissen führen, hat nun ein Team aus dem Helmholtz-Zentrum Berlin und der Bundesanstalt für Materialforschung (BAM) demonstriert. [...]
  • <p>R&ouml;ntgenstreuung an reinem 4T, weihnachtlich eingef&auml;rbt. </p>
<p></p>
    Science Highlight
    14.12.2015
    Dotierung von organischen Halbleitern analysiert
    Organische Halbleitermaterialien werden heute schon erfolgreich eingesetzt, zum Beispiel für Solarzellen oder Leuchtdioden (OLEDs). Bislang war jedoch nur wenig darüber bekannt, wie „Dotier“-Moleküle strukturell in organische Halbleiter integriert werden. Dies hat nun die gemeinsame Forschergruppe „Molekulare Systeme“ des Helmholtz-Zentrums Berlin und der Humboldt-Universität zu Berlin an BESSY II analysiert. Die Ergebnisse sind überraschend: Die Moleküle verteilen sich nicht notwendigerweise gleichmäßig im Wirtsgitter, wie man es von anorganischen Halbleitern gewohnt ist, sondern bilden sogenannte Ko-Kristallite mit dem Wirtsmaterial. [...]
  • <p>Nanostrukturen aus Silizium unter dem Rasterelektronenmikroskop. Der Durchmesser der Nanos&auml;ule betr&auml;gt 570 nm. Der Nanokegel dagegen verj&uuml;ngt sich von seinem oberen Durchmesser 940 nm bis zu 360 nm an der Basis. </p>
    Science Highlight
    26.11.2015
    „Flüstergalerie-Moden“ in Silizium-Nanokegeln verstärken die Lumineszenz
    Das Halbleitermaterial Silizium kann mit Hilfe von Nanostrukturierung ganz neue Talente entfalten. Dies zeigt nun ein Team am HZB-Institut „Nanoarchitekturen für die Energieumwandlung“ und am MPI für die Physik des Lichts. So geben Nanokegel aus Silizium nach Anregung mit sichtbarem Licht 200mal so viel Infrarotlumineszenz ab wie vergleichbar große Nanosäulen.  Modellierungen und experimentelle Ergebnisse zeigen: Die Kegel können durch ihre Geometrie Flüstergalerie-Moden für Infrarotwellen beherbergen, die die Silizium-Lumineszenz verstärken. Neue Anwendungen bis hin zu Nanolasern auf Siliziumbasis sind damit denkbar. [...]
  • <p>Einen Querschnitt durch den Aufbau der Tandemzelle zeigt diese SEM-Aufnahme. </p>
    Science Highlight
    28.10.2015
    Monolithische Tandem-Solarzelle aus Silizium und Perowskit mit Rekord-Wirkungsgrad
    Erstmals ist es Teams aus dem Helmholtz-Zentrum Berlin und der École Polytechnique Fédérale de Lausanne, Schweiz, gelungen, eine Silizium-Hetero-Solarzelle mit einer Perowskit-Solarzelle monolithisch - in einem Block - zu kombinieren. Die hybride Tandemzelle erreichte einen Wirkungsgrad von 18 Prozent. Das ist derzeit der höchste publizierte Wert für einen solchen Aufbau. Perspektivisch könnten sogar Wirkungsgrade von bis zu 30 Prozent möglich sein. [...]
  • <p>Die SiO<sub>2</sub>-Nanoteilchen (schwarz) wurden direkt auf das Molybd&auml;n-Substrat (lila) aufgedruckt, das als R&uuml;ckkontakt dient. Die CIGSe-Schicht (rot) sowie weitere funktionale Schichten wurden auf das Nanomuster aufgewachsen. Weil diese Schichten extrem d&uuml;nn sind, dr&uuml;ckt sich das Muster der Nanoteilchen erkennbar bis zur oberen Schicht durch. Bild. G.Yin/HZB</p>
    Science Highlight
    15.10.2015
    Erstmals experimentell nachgewiesen: Wie Nanoteilchen ultradünne CIGSe-Solarzellen effizienter machen
    CIGSe-Solarzellen sind aus Kupfer, Indium, Gallium und Selen aufgebaut und können hohe Wirkungsgrade erreichen. Um wertvolles Indium einzusparen, soll die CIGSe-Schicht jedoch so dünn wie möglich sein. Dadurch sinkt allerdings der Wirkungsgrad sehr stark. Nun hat es ein Team am Helmholtz-Zentrum Berlin (HZB) geschafft, ultradünne CIGSe-Schichten von hoher Qualität herzustellen und mit winzigen Nanoteilchen auf der Rückseite der Zelle den Wirkungsgrad zu steigern. [...]
  • <p>Die Tandem-Solarzelle besteht (von unten nach oben, wie der Lichteinfall) aus der Perowskit-Schicht (schwarz, 200-300 nm), Spiro.OMeTAD (beige, 200-300 nm), Graphen (am Rand mit Gold kontaktiert), einem Glastr&auml;ger sowie der aSi-cSi-Schicht (lila). </p>
    Science Highlight
    02.10.2015
    Graphen als Frontkontakt für Silizium-Perowskit-Tandem-Solarzellen
    Ein Team aus dem Institut für Silizium-Photovoltaik des Helmholtz-Zentrums Berlin hat ein neues und raffiniertes Verfahren entwickelt, um die empfindliche Perowskit-Schicht erstmals mit Graphen zu beschichten. Mit anschließenden Messungen konnten sie belegen, dass Graphen ideal als Frontkontakt geeignet ist. [...]
  • <p>Neuer Rekordwirkungsgrad: Die kleine Zelle wandelt rund 14 % der einfallenden Solarenergie in Wasserstoff um. </p>
    Science Highlight
    15.09.2015
    Wasserstoff aus Sonnenlicht: Neuer Effizienzrekord bei der künstlichen Photosynthese
    Einem internationalen Team ist es gelungen, den Wirkungsgrad für die direkte solare Wasserspaltung jetzt deutlich zu steigern. Sie nutzen dafür eine Tandem-Solarzelle, deren Oberflächen sie gezielt modifizierten. Der neue Bestwert liegt bei 14 Prozent und damit deutlich über dem bisherigen Rekordwert von 12,4 Prozent, der damit seit 17 Jahren erstmals gebrochen wurde. An der Kooperation sind Forscher vom Institut für Solare Brennstoffe am Helmholtz-Zentrum Berlin, der TU Ilmenau, vom Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg und vom California Institute of Technology beteiligt. Die Ergebnisse sind in Nature Communications veröffentlicht. [...]
  • <p>Sara J&auml;ckle hat gezeigt, dass sich an der Grenzfl&auml;che zwischen organischem Kontakt und n-dotiertem Silizium ein pn-&Uuml;bergang ausbildet. </p>
<p></p>
    Science Highlight
    17.08.2015
    Ladungstransport in hybriden Silizium-basierten Solarzellen
    Eine überraschende Erkenntnis bei organisch-anorganischen Hybrid-Solarzellen hat ein Team um Silke Christiansen gewonnen: anders als erwartet, entspricht der Übergang zwischen der organischen leitfähigen Kontaktschicht aus PEDOT:PSS und dem Silizium-Absorbermaterial nicht einem Metall-Halbleiter-Kontakt (Schottky-Kontakt), sondern einem pn-Übergang zwischen zwei Halbleitermaterialien. Ihre Ergebnisse sind nun in dem Nature-Journal Scientific Reports publiziert und können neue Wege aufzeigen, hybride Solarzellen zu optimieren. [...]
  • <p>Manuela G&ouml;belt kann die lokale Vernetzung aus REM-Aufnahmen der Elektrode am Rechner ermitteln. Foto: Bj&ouml;rn Hoffmann.</p>
<p></p>
    Science Highlight
    31.07.2015
    Transparentes, leitfähiges Netz aus verkapselten Silbernanodrähten – eine neuartige flexible Elektrode für die Optoelektronik
    Ein Team um Silke Christiansen hat eine transparente, hochleitfähige Elektrode für Solarzellen und andere optoelektronische Bauelemente entwickelt, die mit minimalem Materialaufwand auskommt. Sie besteht aus einem ungeordneten Netz aus Silbernanodrähten, das mit Aluminum-dotiertem Zinkoxid beschichtet ist. Die neuartige Elektrode benötigt knapp 70mal weniger Silber als konventionelle Silber-Gitterelektroden, besitzt aber eine vergleichbar gute Leitfähigkeit. [...]
  • <p>Die Illustration zeigt, wie sich an den Energiefl&auml;chen der Elektronen im reziproken Raum die Spins aus der Ebene herausdrehen. Dabei bildet sich eine Konfiguration, die an die Stacheln eines Igels erinnert. Illustration Thomas Splettst&ouml;&szlig;er/HZB</p>
    Science Highlight
    27.07.2015
    Spins in Graphen: ausgerichtet wie die Stachelns eines Igels
    HZB-Team weist fundamentale Eigenschaft des Elektronenspins in Graphen nach [...]
  • <p>Experimente an BESSY II zeigten, dass die Konzentration von Chlor an der Grenzfl&auml;che Perowskit/TiO<sub>2</sub> h&ouml;her ist als in der restlichen Schicht. </p>
    Science Highlight
    10.07.2015
    Inhomogene Chlorverteilung in Perowskit-Schichten
    Mit verschiedenen röntgenspektroskopischen Experimenten an BESSY II zeigte ein HZB-Team, dass sich Chlor in einer bestimmten Klasse von Perowskiten sehr ungleichmäßig verteilt: während an der Oberfläche Chlor nicht nachweisbar ist, findet man in tieferen Lagen, insbesondere an der Grenzfläche zum Substrat, eine signifikante Chlorkonzentration. Die Ergebnisse könnten Wege aufzeigen, bei der Herstellung der Schichten die Verteilung der Chloratome zu kontrollieren und dadurch die Effizienz von Perowskit-Dünnschicht-Solarzellen weiter zu steigern. [...]
  • <p>Der Durchmesser der hexagonalen Einkristalle aus SrCo<sub>6</sub>O<sub>11</sub> misst h&ouml;chstens 0,2 Millimeter.</p>
    Science Highlight
    01.07.2015
    “Teufelstreppe” in einem Spin-Ventil-System
    Ein Japanisch-Deutsches Team entdeckt in einem komplexen Kobaltoxid-Einkristall an BESSY II, wie sich die Spins stufenweise zu einer ungewöhnlichen Anordnung formieren. Dies könnte neue spintronische Bauelemente ermöglichen. [...]
  • <p>Die Zeichnung veranschaulicht wie Maleimid-Verbindungen an der Graphenoberfl&auml;che andocken. Dabei liegt die Graphen-Monolage auf einer d&uuml;nnen Schicht aus Siliziumnitrid (rot) auf einer Quarzmikrowaage (blau) und kann mit einem Goldkontakt (gelb) unter Spannung gesetzt werden.</p>
<p>Illustration: Marc A. Gluba/HZB</p>
    Science Highlight
    24.06.2015
    Auf dem Weg zu Biosensoren mit Graphen
    Erstmals ist es einem Team gelungen, nicht nur präzise zu messen, sondern sogar zu steuern, wie stark eine Graphenschicht eine organische Verbindung absorbiert. Dies könnte in Zukunft ermöglichen, Graphen als empfindlichen Sensor für Biomoleküle zu nutzen. [...]
  • <p>Die Illustration skizziert die komplexe Biostruktur von Dentin: Die dentalen Tubuli (gelbe Hohlzylinder, etwa 1 Mikrometer im Durchmesser) sind von einem Gewebe aus Kollagenfasern umgeben, in das auch die winzigen mineralischen Nanopartikel eingebettet sind. Da deren Durchmesser nur wenige Nanometer betragen, sind sie in dieser Skizze nicht gezeigt. </p>
    Science Highlight
    10.06.2015
    Das Geheimnis starker Zähne: Nanostrukturen unter Spannung
    Ergebnisse könnten in das Design neuer keramischer Materialien einfließen [...]
  • <p>Mit Synchrotron-Tomographie an BESSY II wurde die 3D-Struktur der Batterie-Elektrode mikrometergenau ermittelt.</p>
    Science Highlight
    02.06.2015
    Realitätsgetreues Modell einer Batterieelektrode am Rechner
    Ein Forschungsteam hat einen neuen Ansatz entwickelt, um Batterie-Elektroden am Computer noch realistischer zu modellieren. Sie kombinierten dafür Synchrotron-Tomographie-Aufnahmen, die die dreidimensionale Struktur mikrometergenau abbilden, mit Elektronenmikroskopie-Aufnahmen, die in einem kleinen Ausschnitt sogar Nanostrukturen auflösen. Mit einem mathematischen Modell konnten sie diese Nanostrukturen auf Bereiche außerhalb des Ausschnitts übertragen. Dadurch lassen sich Eigenschaften und Prozesse in Batterie-Elektroden nun höchst realistisch simulieren. [...]
  • <p>Ein ferromagnetischer FeRh-Film ist auf ferroelastischem BTO mit den kristallinen Dom&auml;nen a und c aufgewachsen. Bei 0 Volt zeigen XPEEM-Daten &uuml;ber den a-Dom&auml;nen des BTO ferromagnetische Dom&auml;nen im FeRh (blau-rote Muster), &uuml;ber den c-Dom&auml;nen ist die Nettomagnetisierung im FeRh dagegen Null.  Eine Spannung von 50 Volt wandelt a-Dom&auml;nen zu c-Dom&auml;nen um und schaltet dadurch die ferromagnetischen Dom&auml;nen im FeRh aus. </p>
    Science Highlight
    18.05.2015
    Spintronik: Mit Spannung zwischen „0“ und „1“ umschalten
    In einer Struktur aus zwei verschiedenen ferroischen Schichten hat ein Team aus Paris und dem HZB es geschafft, mit Hilfe einer Spannung magnetische Domänen an und auszuschalten. Dies gelang jetzt schon nahe der Raumtemperatur. Ihre Arbeit ist für zukünftige Anwendungen in der Spintronik interessant, zum Beispiel um Daten mit weniger Energieaufwand schnell und effizient zu speichern. Die Ergebnisse sind nun in Scientific Reports veröffentlicht. [...]
  • <p>Dieser <a href="http://www.youtube.com/watch?v=ma-ZXS4XUp4" class="Extern">kurze Filmclip</a> zeigt die Herstellung der Photokathode mit dem ILGAR-Verfahren.</p>
    Science Highlight
    13.05.2015
    Künstliche Photosynthese: Neue Photokathode mit viel Potential
    Ein Team des HZB-Instituts für Solare Brennstoffe hat eine neue Komposit-Photokathode entwickelt, um mit Sonnenlicht effizient Wasserstoff zu erzeugen. Damit kann Solarenergie chemisch gespeichert werden. Die Photokathode besteht aus einer Chalkopyrit-Dünnschicht vom PVComB, die mit einem neu entwickelten dünnen Film aus Titandioxid beschichtet ist, in den Platin-Nanoteilchen eingebettet sind. Diese Schicht schützt die Chalkopyrit-Dünnschicht nicht nur vor Korrosion, sondern beschleunigt außerdem als Katalysator die Wasserstoffbildung und weist selbst hohe Photostromdichte und Photospannung auf. [...]
  • <p>Die Zeichnung skizziert das Tintendruck-Verfahren f&uuml;r eine Kesterit-Schicht. </p>
    Science Highlight
    06.05.2015
    Tintendruck-Verfahren für Kesterit-Solarzellen
    Ein Team aus dem HZB hat ein neues Verfahren entwickelt, um mit einer speziellen Tinte Kesterit-Absorberschichten (CTZSSe) Tropfen für Tropfen auszudrucken. Solarzellen mit so produzierten Absorberschichten erreichten Wirkungsgrade von 6,4 %. Auch wenn dies noch deutlich unter den Rekordwerten für Kesterit-Solarzellen liegt, ist das Tintendruck-Verfahren interessant für die industrielle Produktion, da es extrem ökonomisch ist und kaum Abfälle erzeugt. [...]
  • <p>Die Neutronentomographie-Aufnahmen (linke Spalte) zeigen, wie sich Fl&uuml;ssigkeit in dieser Zahnf&uuml;llung verteilt, w&auml;hrend die R&ouml;ntgen-CT-Aufnahmen (rechte Spalte) Mikrostruktur und Poren der gleichen Probe abbilden. Der Vergleich erlaubt zu sehen, welche Poren mit Fl&uuml;ssigkeit gef&uuml;llt sind. <span></span></p>
    Science Highlight
    13.03.2015
    Neutronen und Röntgen-CT zeigen, wie stabilere Zahnfüllungen gelingen
    Es gibt nicht nur unterschiedliche Materialien für Zahnfüllungen, sondern auch unterschiedliche Methoden, um das Füllmaterial anzurühren. Welche Zubereitung zum besten Ergebnis führt, ist nicht leicht herauszufinden. Ein Team aus Kopenhagen hat nun einen Weg gefunden, diese Frage für eine wichtige Klasse von Zahnfüllmaterialien zu beantworten: Sie untersuchten unterschiedlich angerührte Zahnfüllungen auf Basis eines Glasionomerzements mit Röntgen- und Neutronentomographie am HZB. Ihre Ergebnisse zeigen, dass die Zubereitung eine große Rolle spielt, um flüssigkeitsgefüllte Poren zu vermeiden, die die Stabilität der Füllung verringern. Die Arbeit ist nun in Scientific Reports publiziert. [...]
  • <p>Aufnahmen mit dem Raster-Elektronenmikroskop zeigen, wie regelm&auml;&szlig;ig die in ein Silizium-Substrat einge&auml;tzten Trichter angeordnet sind (links: L&auml;ngenskala 5 Mikrometer, rechts: 1 Mikrometer). Die Trichter messen oben im Durchmesser noch rund 800 Nanometer und laufen unten auf etwa hundert Nanometer spitz zu. </p>
    Science Highlight
    24.02.2015
    Vom Auge abgeschaut: Mikrotrichter aus Silizium erhöhen die Effizienz von Solarzellen
    Eine Biostruktur im Säugetierauge hat ein Team um Silke Christiansen inspiriert, ein anorganisches Pendant für den Einsatz in Solarzellen zu entwerfen. Mit Hilfe etablierter halbleitertechnologischer Verfahren ätzten sie dicht an dicht mikrometerfeine, vertikale Trichter in ein Siliziumsubstrat. Mit Modellrechnungen und im Experiment testeten sie, wie solche Trichterfelder das einfallende Licht sammeln und in die aktive Schicht einer Siliziumsolarzelle leiten. Durch diese Trichteranordnung steigt die Lichtabsorption in einer damit versehenen Dünnschichtsiliziumsolarzelle um 65 %, was sich in deutlich verbesserten Solarzellparametern u.a. einem erhöhten Wirkungsgrad widerspiegelt. [...]
  • <p>Beim Chromdimer sind die beiden Chromatome &uuml;ber zw&ouml;lf gemeinsame Valenzelektronen eng miteinander verbunden. Da die Spins der Elektronen antiparallel zueinander sind, ist  kein magnetisches Moment zu beobachten. </p>
    Science Highlight
    23.02.2015
    Dehnen und Lockern! – Verlust eines Elektrons schaltet Magnetismus in Chromdimer an
    Ein internationales Forschungsteam aus Berlin, Freiburg und Fukuoka, Japan, hat erstmals einen direkten experimentellen Einblick in das geheime Quantenleben des Chromdimers gewonnen: Das Molekül aus zwei Chrom-Atomen besitzt zwölf Valenzelektronen, die eine enge Sechsfachbindung zwischen den beiden Atomen gewährleisten. Die Abspaltung von nur einem einzigen Elektron verändert diese Situation dramatisch: Zehn Elektronen lokalisieren sich und richten ihre Spins parallel aus, so dass das Chromdimer-Kation ferromagnetisch wird. Für die molekulare Bindung sorgt dann nur noch ein einziges Elektron. Die Forscher nutzten ein einzigartiges Instrument, die Nanocluster Trap an BESSY II am Helmholtz-Zentrum Berlin, und haben ihre Ergebnisse in der Zeitschrift Angewandte Chemie veröffentlicht. [...]
  • <p>Die LFO-Schicht weist normalerweise eine antiferromagnetische Ordnung auf (AFM) und besitzt keine ferromagnetischen Dom&auml;nen. Doch die ferromagnetischen Dom&auml;nen (wei&szlig;e Pfeile) der LSMO-Schichten bewirken, dass an den Grenzfl&auml;chen in der LFO-Schicht ferromagnetische Dom&auml;nen ausbilden, die antiparallel zu den angrenzenden Dom&auml;nen der LSMO-Schicht ausgerichtet sind.</p>
<p></p>
    Science Highlight
    17.02.2015
    Einblick ins Innere magnetischer Schichten
    Messungen an BESSY II zeigen, wie sich in magnetischen Sandwiches „Spin-Filter“ bilden, die den Tunnelmagnetwiderstand beeinflussen – Ergebnisse können beim Design spintronischer Bauelemente helfen [...]
  • <p>Die Abbildung illustriert eine Momentaufnahme w&auml;hrend der Reaktion von CO zu CO<sub>2</sub>, wie sie nun erstmals am SLAC gelungen ist. </p>
    Science Highlight
    12.02.2015
    Erstmals mit Details: Wie giftiges Kohlenmonoxid am Katalysator zu Kohlendioxid verbrennt
    Ein internationales Forschungsteam hat erstmals die flüchtigen Zwischenstufen beobachtet, die sich bilden, wenn Kohlenmonoxid auf einer heißen Ruthenium-Oberfläche, einem einfachen Katalysator, oxidiert. Sie nutzten dafür ultrakurze Röntgenblitze und Laserpulse am SLAC National Accelerator Laboratory, Menlo Park, Kalifornien. Dabei erhitzte ein Laserblitz zunächst die Ruthenium-Oberfläche und aktivierte so die absorbierten Kohlenmonoxid-Moleküle und Sauerstoff-Atome. Über Röntgenabsorptionsspektroskopie konnte das Team dann ermitteln, wie sich die elektronische Struktur der Sauerstoffatome veränderte, während sie mit Kohlenstoff-Atomen Bindungen anbahnten. Die beobachteten Übergangszustände stimmen mit quantenchemischen Berechnungen gut überein. [...]
  • <p>F&uuml;r das Titelbild hat Teamleiter Peter Smeibidl seine Leute zum Klettern motiviert; die Ingenieure haben darin viel &Uuml;bung, denn beim Aufbau der gewaltigen Struktur m&uuml;ssen sie ohnehin &uuml;berall ran. Foto: Ingo Kniest/HZB</p>
    Science Highlight
    12.02.2015
    Forschungsmagazin „Sichtbar“: Große Forschung, interessante Leute, neue Perspektiven
    Auf dem Titelbild prangt ein echter Star: Der neue Hochfeldmagnet, umgeben und beklettert von den Physikerinnen und Experten, die in den letzten sieben Jahren am Aufbau dieses weltweit einzigartigen Großgeräts mitgearbeitet haben. Auch im Heft finden Sie Bilder und Geschichten aus der HZB-Forschung, die wir manchmal auch aus einer anderen Perspektive erzählen als sonst. [...]
  • <p>In der Mitte einer d&uuml;nnen magnetischen Schicht befindet sich ein Wirbel. Ein kurzer Strompuls durch einen Nanodraht lenkt den magnetischen Wirbel (Skyrmion), aus seiner Ruhelage aus. Auf einer Spiralbahn bewegt es sich zur&uuml;ck in seine Ausgangsposition. Dies l&auml;sst sich mit Hilfe der R&ouml;ntgenholografie beobachten. Die spiralf&ouml;rmige Bahn und das Skyrmion sind schematisch oberhalb der Struktur dargestellt. </p>
    Science Highlight
    02.02.2015
    Spintronik: Der Tanz der Nanowirbel
    Mit Hilfe der Röntgenholografie gelang es einem Forscherteam, die Bewegungsmuster sogenannter Skyrmionen sichtbar zu machen. Dabei stießen die Forscher auf eine neue Erkenntnis: Die Nanowirbel besitzen eine Masse. Die Arbeit ist am 02. Februar 2015 in „Nature Physics" erschienen. [...]
  • <p>Nanodiamanten messen nur wenige Nanometer im Durchmesser und bestehen aus einigen tausend Kohlenstoffatomen. Mohamed Sennour, MINES ParisTech.</p>
    Science Highlight
    28.01.2015
    „Löcher“ im Valenzband von Nanodiamanten entdeckt
    Eigenschaften könnten sich gezielt verändern lassen, um Nanodiamanten als Katalysatoren für die Wasserstofferzeugung mit Sonnenlicht zu nutzen, hoffen die Forscher. [...]
  • <p>Das umfassende Buch &uuml;ber Kesterit-Solarzellen ist nun erschienen. </p>
    Science Highlight
    23.01.2015
    Frisch erschienen: Alles über Kesterit-Solarzellen:
    Pünktlich zum Beginn des neuen Jahres erscheint das Buch "Copper Zinc Tin Sulfide-based Thin Film Solar Cells" (Wiley, 2015, Herausgeber K.Ito), an dem auch Wissenschaftler des HZB beteiligt sind. Thomas Unold, Justus Just und Hans-Werner Schock haben das Kapitel "Coevaporation of CZTS Films and Solar Cells" beigetragen, Susan Schorr hat ein Kapitel zu "Crystallographic Aspects of CZTS" verfaßt. [...]
  • <p>Festplatte aus dem Himmel: Der Pallasite Meteorit enth&auml;lt noch Informationen aus dem fr&uuml;hen Solarsystem.<br /><em></em></p>
    Science Highlight
    22.01.2015
    Nachricht aus dem Himmel
    Geologen der Universität Cambridge um Dr. Richard Harrison haben an BESSY II bislang verborgene magnetische Signale in Meteoriten entdeckt. Sie legen Zeugnis ab von Magnetfeldern im Gestein während der frühen Phase des Sonnensystems und ermöglichen vielleicht eine Voraussage zum Schicksal des Erdmagnetfeldes in ferner Zukunft. Das Team um Dr. Richard Harrison hat in Meteoriten winzige Partikel identifiziert, die sich während der frühen Phase des Sonnensystems magnetisch ausgerichtet haben. [...]
  • <p>K&uuml;nstliche Katalysatoren ahmen das Prinzip der Photosynthese nach.<br /></p>
    Science Highlight
    21.01.2015
    Auf dem Weg zur künstlichen Photosynthese
    HZB-Forscher beschreiben effizienten Mangan-Katalysator für die Umwandlung von Licht in chemische Energie [...]
  • <p><span class="imageCaption">Forschende am PSI erblickten auf einem f&uuml;nf mal f&uuml;nf Mikrometer kleinen Quadrat eine kuriose magnetische Substruktur schwarz auf weiss &ndash; und f&uuml;hlten sich an die stilisierte Fledermaus des Batman-Logos erinnert. Die schwarzen Bereiche zeigen an, wo die Magnetisierung nach unten weist, also ins Bild hinein; in den weissen weist sie nach oben.<br /></span></p>
    Science Highlight
    12.01.2015
    Batman zeigt den Weg zu kompakter Datenspeicherung
    Forschenden am Paul Scherrer Institut PSI ist es gelungen, winzige magnetische Strukturen mit Laserlicht umzuschalten und die Veränderung zeitlich zu verfolgen. Dabei blinkte kurz ein nanometergrosser Bereich auf, der skurrilerweise an das Fledermaus-Symbol von Batman erinnert. Die Forschungsergebnisse könnten die Datenspeicherung auf Festplatten kompakter, schneller und effizienter machen. [...]
  • <p>Die a-Si:H-Unterzellen werden auf dem transparenten Frontkontakt (AZO) abgeschieden, als R&uuml;ckkontakt dient eine ITO-Schicht. Die organische Sub-Zelle besitzt einen Frontkontakt aus leitf&auml;higem PEDOT und einen metallischen R&uuml;ckkontakt.</p>
    Science Highlight
    12.01.2015
    Maximale Effizienz, minimaler Einsatz
    Dünnschichtsolarzelle auf Siliziumbasis nutzt mit organischer Zusatzschicht auch infrarotes  Licht  [...]
  • <p>Karsten Holldack, Alexander Schnegg und Joscha Nehrkorn am THz-EPR Messplatz am Speicherring BESSY II. <span><span><br /></span></span></p>
    Science Highlight
    06.01.2015
    Elektronenspin-Flips unter neuem Licht
    Wissenschaftler im Berlin Joint EPR Lab am Helmholtz-Zentrum Berlin (HZB) und der University of Washington (UW) haben eine neue theoretische Beschreibung ausgearbeitet, die es erlaubt, Übergangswahrscheinlichkeiten zwischen Spin-Zuständen in „Elektronen Paramagnetische Resonanz“ (EPR)-Experimenten mit beliebiger Orientierung und Polarisation der anregenden Strahlung zu berechnen. Die Physiker haben den neuen Ansatz bereits mit einem Terahertz-EPR-Experiment an der Synchrotronquelle BESSY II getestet und veröffentlichen ihre Arbeit am 6. Januar 2015 im renommierten Fachjournal Physical Review Letters (DOI 10.1103/PhysRevLett.114.010801). [...]
  • <p>Kristallstrukturen von HgBa<sub>2</sub>CuO<sub>4</sub>+ and YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub>.</p>
    Science Highlight
    22.12.2014
    Neues Puzzleteil zum Verständnis von Hochtemperatursupraleitern
    Ein internationales Forscherteam hat Ladungsdichtemuster in einem besonders reinen Hoch-Tc-Supraleiter identifiziert und damit gezeigt, dass dieses Phänomen eine allgemeine Eigenschaft in Hoch-Tc-Materialien ist. Zusätzlich konnten sie eine Beziehung zwischen Quantenoszillationen unter Magnetfeldern mit der räumlichen Verteilung der Ladungsmuster herstellen.  [...]
  • <p>Die organischen Molek&uuml;le (hier in einer Kuvette) wandeln niedrigenergetische (rote) Photonen in h&ouml;herenergetische (&bdquo;blaue&ldquo;) Photonen um, die in eine Solarzelle zur Stromerzeugung beitragen k&ouml;nnen. </p>
    Science Highlight
    27.11.2014
    Organische Schicht addiert das Licht
    Solarzellen können nur Photonen mit einer bestimmten Mindestenergie für die Stromerzeugung nutzen. Ein deutsch-australisches Team hat ein organisches Material in Solarzellen eingesetzt, das Photonen mit niedriger Energie zu einem Photon mit höherer Energie „addiert“, dessen Energie für die Nutzung in der Solarzelle ausreicht. Nun geben die Forscher in einem eingeladenen Beitrag im renommierten Fachmagazin Energy & Environmental Science eine Übersicht über das interessante Phänomen der Aufkonversion und melden neue Ergebnisse. So bleiben die organischen Schichten länger stabil als erwartet und könnten sich auch für andere optoelektronische Bauteile eignen. [...]
  • <p>Beide Abbildungen zeigen experimentelle Daten zum &bdquo;Dirac-Kegel&ldquo;.</p>
    Science Highlight
    14.11.2014
    Warping in Topologischen Isolatoren
    Topologische Isolatoren gelten als Hoffnungsträger für den verlustlosen Strom- und Informationstransport. Nun haben HZB-Physiker um Jaime Sánchez-Barriga erstmals untersucht, ob die Bewegungsrichtung von Elektronen in Topologischen Isolatoren Einfluss auf ihr Verhalten hat. Dabei identifizierten sie Richtungen, in denen die Elektronen sehr viel anfälliger für Streuverluste sind und daher den Strom schlechter leiten. Um ihr Ergebnis zu erklären, bezogen sie erstmals auch den Spin der Elektronen ein und stellten damit eine vorherrschende Vorstellung in Frage. Das Ergebnis könnte die Forschung an Toplogischen Isolatoren beflügeln, insbesondere wenn in Zukunft durch BESSY-VSR deutlich kürzere Lichtpulse zur Verfügung stehen, um die Dynamik der Elektronen zu untersuchen. Ihre Studie zum „Warping“ von topologischen Isolatoren wurde in der Zeitschrift Physical Review B publiziert und als "Editor's Suggestion" ausgewählt, nur sechs Prozent der dort veröffentlichten Artikel erfahren eine derartige Würdigung. [...]
  • <p>Mit RIXS&ndash;Spektroskopie lassen sich fl&uuml;ssige oder festen Proben untersuchen. Das HZB-Team kann nun noch etwas mehr Information aus den Spektren gewinnen. </p>
    Science Highlight
    14.10.2014
    Was Details in Röntgen-Spektren (RIXS) alles verraten
    Eine Studie aus dem HZB zeigt im neuen Journal "Structural Dynamics", wie sich mit RIXS–Spektroskopie die Dynamik der elektronischen und molekularen Struktur in komplexen Flüssigkeiten und Materialien untersuchen lässt und wirft neues Licht auf ein bislang unverstandenes Phänomen. [...]
  • Science Highlight
    06.10.2014
    Open Access: Webinar für Helmholtz-Doktorand/-innen
    Im Rahmen der internationalen Open Access Week 2014 finden weltweit Veranstaltungen statt um für den freien Zugang zu Wissen zu werben und zu informieren. [...]
  • Science Highlight
    29.09.2014
    Tage der Forschung in Adlershof
    Am 25. und 26. September fanden in Adlershof die jährlichen Tage der Forschung statt. Das HZB bot rund 90 Schülerinnen und Schülern in drei unterschiedlichen Programmpunkten einen Einblick in die Welt der Forschung. [...]
  • Science Highlight
    26.09.2014
    „Multispektral - Brille“ für das Rasterelektronenmikroskop
    Reflektionszonenplatten aus dem HZB ermöglichen den präzisen Nachweis von leichten Elementen in Materialproben unter dem Rasterelektronenmikroskop, indem sie hohe Auflösung im Energiebereich von 50 – 1120 eV bieten. [...]
  • Science Highlight
    26.09.2014
    Deutsche Gesellschaft für Materialkunde zeichnet Publikation mit HZB-Beteiligung aus.

    Die Deutsche Gesellschaft für Materialkunde (DGM) hat auf ihrer Jahrestagung am 22. September 2014 den Werner-Köster-Preis für die beste Publikation in der Zeitschrift „International Journal of Materials Research“ vergeben. Zu den Autoren gehört auch der HZB-Wissenschaftler Dr. Michael Tovar. Die Arbeit untersucht die katalytische Wirkung von Vanadiumpentoxid bei der Synthese von Propen aus Propan mit spektroskopischen, mikroskopischen und röntgenografischen Methoden. [...]

  • <p>Das Forschungsmagazin Sichtbar erscheint zweimal j&auml;hrlich.</p>
    Science Highlight
    10.09.2014
    Sichtbar: Das Forschungsmagazin aus dem HZB
    Die neue Sichtbar ist erschienen. Mit Interviews, Hintergrundberichten und Meldungen zeigt das Magazin, an welchen Fragen HZB-Forscherinnen und -Forscher arbeiten: Von neuen Solarzellen bis hin zu Mikrogelen, aus denen sich komplexe funktionale Materialien für medizinische Anwendungen komponieren lassen, zum Beispiel für eine effizientere Dialyse. [...]
  • Science Highlight
    22.08.2014
    Proteine: Neue Materialklasse entdeckt
    Deutsch-chinesisches Forscherteam führt zentrale Untersuchungen zu „Protein Crystalline Frameworks“ an BESSY II des HZB durch [...]
  • Science Highlight
    11.08.2014
    Neuer „lichtblick“ online
    Ein Denkmal im Ehrenhof der Humboldt-Universität erinnert seit kurzem an Lise Meitner – das erste Denkmal für eine Wissenschaftlerin in Deutschland überhaupt. Über die außergewöhnliche Wissenschaftlerin und die Entstehung der Bronze berichten wir in der aktuellen Ausgabe der HZB-Mitarbeiterzeitung „lichtblick“, die jetzt auch online ist. [...]
  • <p>Kryo-TEM Aufnahme von Gold Nanoteilchen in dem besonderen L&ouml;sungsmittel. Die Sputterzeit betr&auml;gt 300 s. Dom&auml;nen mit selbstangeordneten Nanoteilchen sind rot markiert.<br /></p>
    Science Highlight
    04.08.2014
    Nanoteilchen aus Gold gruppieren sich selbständig
    Eine erstaunliche Beobachtung haben Forscher des HZB und der Humboldt-Universität zu Berlin gemacht: Sie untersuchten die Bildung von Gold-Nanoteilchen in einem Lösungsmittel und stellten fest, dass sich die Nanoteilchen nicht gleichmäßig verteilten, sondern von selbst zu kleinen Clustern gruppierten. [...]
  • <p>Die Neutronentomografie zeigt, wie sich die beiden unterschiedlichen kristallinen Phasen Austenit und Martensit in der Stahlprobe verteilen. Links ist die Probe nach Torsion gezeigt. Rechts nach Zugspannung.<br /></p>
    Science Highlight
    31.07.2014
    Was passiert in Stahl unter Belastung?
    Umwandlung von Kristalliten mit neuartiger Neutronentomografie dreidimensional kartiert [...]
  • <p>Rasterelektronenmikroskopie der Oberfl&auml;che vor der Pyrolyse (a) und nach der Pyrolyse (b und c). </p>
    Science Highlight
    01.07.2014
    Künstliches Mottenauge als Lichtfänger
    Forscher der EMPA bei Zürich und der Universität Basel haben an BESSY II eine photoelektrochemische Zelle untersucht, deren Oberfläche ähnlich wie ein Mottenauge strukturiert ist. So fängt sie deutlich mehr Licht ein, was Ausbeute an gewonnenem Wasserstoff erhöht. Für die Strukturierung verwendeten sie preiswerte Materialien wie Wolframoxid und Rost. [...]
  • <p>Rasterelektronenmikroskopie der Membran. </p>
    Science Highlight
    01.07.2014
    „Haut mit Muskeln“: Einfache Formeln beschreiben komplexes Verhalten
    HZB-Forscher hilft Chemikern, mechanische Eigenschaften „biomimetischer“ Materialien zu verstehen [...]
  • <p>Eine ultrad&uuml;nne dielektrische Schicht kann den &Uuml;bergang der Ladungstr&auml;ger (hier rote &bdquo;L&ouml;cher&ldquo;) vom organischen Halbleiter in das Metall erleichtern. Sie schafft eine kontinuierliche Verbindung zwischen den Energieniveaus im organischen Material (blau) und im Metall (schwarz, Fermi-level). Dadurch gelingt ein guter elektrischer Kontakt. <br /><br /></p>
    Science Highlight
    18.06.2014
    Elektrostatik reicht schon:
    Einfaches Modell beschreibt, was zwischen organischen Halbleitern und Metallen geschieht [...]
  • <p>Unter dem Rasterelektronen- mikroskop wird sichtbar, wie genau die drei Fresnel-Zonenplatten &uuml;bereinander positioniert werden konnten. Mit solchen 3D-R&ouml;ntgenoptiken lassen sich Aufl&ouml;sung und Lichtst&auml;rke deutlich steigern.</p>
    Science Highlight
    18.06.2014
    Schärfer sehen mit Röntgenlicht
    HZB Team entwickelt dreidimensionale Röntgenoptiken für Volumenbeugung [...]
  • <p>Die drei Vertreterinnen des&nbsp;<a href="http://hzbzlog.com/" class="Extern"> #HZBzlog</a> Sibylle Grunze, Ina Helms und Antonia R&ouml;tger (v.l.)</p>
    Science Highlight
    22.05.2014
    #HZBzlog gewinnt Deutschen Preis für Onlinekommunikation als beste Microsite
    Seit etwa vier Monaten ist das HZB-Zukunftslogbuch #HZBzlog mit seiner ungewöhnlichen Episodenstruktur online, und es findet immer mehr Fans. Die als Langzeitdokumentation angelegte Seite öffnet ein Fenster in die Forschung und gibt den Blick frei auf die Geschichten hinter den Kulissen. Täglich surfen zwischen 500 und 1.000 Menschen auf der Seite und warten gespannt auf neue lebendige Einträge rund um die großen Zukunftsprojekte am HZB. Vier Monate nach dem Start gewinnt das neue HZB-Portal nun den von der Deutschen Presseakademie herausgegebenen "Deutschen Preis für Onlinekommunikation" und ist auf dem besten Weg, ein Erfolg zu werden. [...]
  • <p><a href="https://www.helmholtz-berlin.de/media/media/aktuell/print//lichtblick/76/hzb_lichtblick_mai-2014_extern_web.pdf" class="Extern"><span class="Intern">Lichtblick zum Download</span></a></p>
    Science Highlight
    20.05.2014
    Neuer Lichtblick erschienen
    Am Campus Wannsee entstehen neue Labore für die Materialsynthese: In unserer Mitarbeiterzeitung "lichtblick" berichten wir erstmals über das neue Bauvorhaben, das Materialforscherinnen und -forscher anlocken soll. Die Labore werden benötigt, um erfolgreich neuartige Materialkonzepte für die Energieumwandlung und -speicherung zu charakterisieren. [...]
  • <p>Kristallstruktur eines menschlichen MTH1-Proteins in Verbindung mir einem Schl&uuml;sselinhibitor. Bildquelle:Stockholm University, Prof. Pal Stenmark.</p>
    Science Highlight
    08.04.2014
    Neues Behandlungskonzept gegen Krebs
    Ein Forscherteam von fünf schwedischen Universitäten hat einen neuen Weg gefunden, Krebs zu behandeln. Ihr Konzept haben die Wissenschaftler jetzt im Fachjournal „Nature“ vorgestellt. Es basiert darauf, ein für Krebszellen charakteristisches Enzym mit der Bezeichnung MTH1 zu blockieren. Im Gegensatz zu normalen Zellen brauchen Krebszellen MTH1, um zu überleben. Ohne MTH1 werden oxidierte Nukleotide in die Krebs-DNA integriert – letale DNA-Doppelstrangbrüche sind die Folge. [...]
  • <p>Die Abbildung zeigt die typische Spintextur (Pfeile) eines topologischen Isolators (unten) und wie diese durch zirkular polarisiertes Licht entweder gemessen (oben) oder kontrolliert ver&auml;ndert wird (Mitte). </p>
    Science Highlight
    27.03.2014
    Elektronenspins mit Licht steuern
    HZB-Wissenschaftler beeinflussen den Elektronenspin an der Oberfläche Topologischer Isolatoren gezielt mit Licht [...]
  • <p></p>
<p></p>
    Science Highlight
    20.02.2014
    HZB-Zeitung "Lichtblick" erschienen
    Viele Menschen, die in einem Forschungszentrum arbeiten, bleiben unsichtbar. Sie sind Dienstleister für die Wissenschaftlerinnen und Wissenschaftler – oder machen, wie der Strahlenschutzexperte, Dr. Guido Buchert, das Forschen an den Großgeräten erst möglich. In dieser Ausgabe stellen wir seinen Berufsweg und sein höchst verantwortungsvolles Aufgabengebiet vor. [...]
  • <p>Das Bild zeigt die dreidimensionale Rekonstruktion einer Atomsonden-Messung. Dabei umgibt die &gamma;-Matrix (lila) die w&uuml;rfelf&ouml;rmigen &gamma;&acute;-Ausscheidungen (gr&uuml;n). In den &gamma;&acute;-Ausscheidungen sind die nur wenige Nanometer gro&szlig;en &gamma;-Pl&auml;ttchen zu erkennen. Die Atomsondentomografie erm&ouml;glicht damit eine ortsspezifische Analyse des atomaren Aufbaus und der chemischen Zusammensetzung einzelner Bereiche der Messung. </p>
    Science Highlight
    14.01.2014
    Was Superlegierungen super macht - Hierarchische Mikrostruktur in einer Superlegierung
    Forscher haben erstmals detailliert beobachtet, wie sich durch Wärmebehandlung eine hierarchische Mikrostruktur in einer Superlegierung entwickelt [...]
  • <p>Als Testobjekte nutzten die Forscher den Umriss eines Geckos, der 10.000-fach verkleinert in eine Goldfolie einstrukturiert wurde und einen Ausschnitt aus dem &bdquo;Siemensstern&ldquo;, der hier wie eine Muschel aussieht. Das ganze Testobjekt hat mit sechs Mikrometern Durchmesser etwa die Gr&ouml;&szlig;e eines roten Blutk&ouml;rperchens. Die kleinsten noch aufgel&ouml;sten Strukturen haben eine Breite von gerade einmal 46 Nanometern. </p>
    Science Highlight
    07.01.2014
    Neues holografisches Verfahren nutzt „bildstabilisierte Röntgenkamera“
    Ein Team um Stefan Eisebitt hat ein neues Röntgen-Holografie-Verfahren entwickelt, das „Schnappschüsse“ von dynamischen Prozessen mit bisher unerreichter Auflösung in Aussicht stellt. Die Effizienz des neuartigen Verfahrens beruht auf einer fokussierenden Röntgenoptik, die  mit dem abzubildenden Objekt fest verbunden ist. Dadurch liefert das Verfahren zwar zunächst eine unscharfe Abbildung, diese kann im Nachhinein jedoch fokussiert werden. Gleichzeitig löst dieser Trick (nämlich die feste Verbindung zwischen Objekt und Fokussieroptik) elegant das Problem des „Verwackelns“, das auf Nanometerskala eine enorme Rolle spielt. [...]
  • <p>Streifenanordnung von Ladungstr&auml;gern in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+x</sub> [2]. Die Abbildung zeigt die Struktur mit einer Periode von etwa einem Nanometer (vorn) und das zugeh&ouml;rige Beugungsbild (hinten) in Form einer sogenannten Fouriertransformation (Yazdani Lab, Princeton University).</p>
    Science Highlight
    19.12.2013
    Starre Ordnung konkurriert mit Supraleitung
    Heute in Science Express: In Hochtemperatursupraleitern wie den Cupraten können die Ladungsträger sich zu winzigen „Nanostreifen“ anordnen, was die Supraleitung unterdrückt, zeigten Gastforscher aus Princeton und Vancouver an BESSY II [...]
  • Science Highlight
    13.11.2013
    HZB-Zeitung "lichtblick" erschienen
    In der aktuellen Ausgabe der Lichtblick stellen wir Ihnen Mitarbeiterinnen und Mitarbeiter aus dem HZB vor. Jessica Neumann leitet das Rechnungs- und Finanzwesen und stellt sicher, dass das HZB immer genug Geld auf dem Konto hat - eine herausfordernde Aufgabe, die Fingerspitzengefühl und Kommunikationsstärke erfordert. [...]
  • Science Highlight
    06.09.2013
    Druckfrisch: HZB-Highlightbericht 2012
    Der neue Leistungsbericht des HZB mit Highlights aus Nutzer- und Eigenforschung ist erschienen. Von der Achillesferse des Malaria-Erregers bis zum Turbo für Solarzellen beschreibt die Broschüre exemplarisch, welche Ergebnisse Wissenschaftlerinnen und Wissenschaftler 2012 an der Neutronenquelle BER II, am Elektronenspeicherrring BESSY II und in der Energieforschung erzielt haben. Doch mit dem Highlightbericht blicken wir auch in die Zukunft: Die neue strategische Ausrichtung des HZB auf das Schwerpunktthema „Energie“, Upgrade-Projekte an BESSY II; Neuberufungen und Kooperationen mit Universitäten und Forschungseinrichtungen im In- und Ausland sind ebenfalls wichtige Themen. [...]
  • <p>Susan Schorr wird portr&auml;tiert.</p>
    Science Highlight
    23.08.2013
    Neue "lichtblick" erschienen
    Großes Interview mit der Geschäftsführung zur Zukunft des HZB [...]
  • <p>An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische R&ouml;ntgenstreuung verst&auml;rken kann, bei der eine Frequenzverschiebung stattfindet.<br />&copy;HZB/E. Strickert</p>
    Science Highlight
    21.08.2013
    HZB-Forscher stoßen Tor für die Festkörperphysik auf
    Laserprozesse jetzt auch mit Röntgenstrahlen am Festkörper beobachtet
    [...]
  • Diese Grafik zeigt die von Aziz entwickelte Fließzelle, die es ermöglicht, biologische Proben in ihrer natürlichen, wässrigen Umgebung mit Röntgenstrahlung zu untersuchen. Insbesondere die dunklen Stellen im Spektrum lassen nun dank theoretischer Arbeiten der Gruppe um Oliver Kühn sehr genaue Rückschlüsse auf molekulare Interaktionen in der Probe zu.
    Science Highlight
    21.08.2013
    Neue Werkzeuge, um molekulare Wechselwirkungen zu verstehen
    Chemische Prozesse in Organismen aber auch in anorganischen „nassen“ Systemen wie Katalysatoren oder neuen funktionalen Materialien sind höchst komplex und viele sind bisher nur sehr grob verstanden. Denn es ist überaus schwierig, experimentell zu verfolgen, wie Atome oder Moleküle in Lösung miteinander reagieren, Bindungen eingehen oder auflösen. Bisher konnten Forscher mit spektroskopischen Verfahren nur eine Überlagerung aller Wechselwirkungen beobachten, nicht jedoch einzelne Bindungsvorgänge unterscheiden. Das könnte sich durch eine aufsehenerregende Arbeit von HZB-Forschern um Emad Flear Aziz nun ändern. Er entwickelte ein verfeinertes Messverfahren, mit dem er eine Art Fingerabdruck der Wechselwirkungen nehmen kann. Aus diesem „Fingerabdruck“ lassen sich mit Hilfe eines theoretischen Werkzeugs, das  Oliver Kühn, Universität Rostock, entwickelt hat, einzelne Reaktionen identifizieren. Die Arbeit ist nun in den Physical Review Letters veröffentlicht. [...]
  • <p>Ein wasserl&ouml;slicher Ni(II)-Katalysator erlaubt die Polymerisation von Ethylen in w&auml;ssriger L&ouml;sung. Die Grafik zeigt, wie die neu entstehenden Teile der PE-Kette in den wachsenden Kristall eingebaut werden. Die amorphen Bereiche wirken in dem idealen Nanokristall wie Umlenkrollen, die die Richtung der Ketten im Kristall um 180 Grad &auml;ndern.</p>
    Science Highlight
    14.08.2013
    Idealer Nanokristall aus Massenkunststoff hergestellt
    Polyethylen ist ein Massenkunststoff, der in vielen Haushaltsgegenständen zu finden und daher besonders preiswert herzustellen ist. Einem Forscherteam aus Konstanz, Bayreuth und Berlin gelang es nun, aus diesem Kunststoff einen idealen Nanokristall zu synthetisieren. Voraussetzung dafür war ein neuartiger Katalysator, den die Gruppe der Universität Konstanz hergestellt hat sowie eine Kombination von einzigartigen Analysemöglichkeiten, wie sie am Helmholtz-Zentrum Berlin (HZB) zu finden sind. Die kristalline Nanostruktur, die dem Kunststoff neue Eigenschaften verleiht, könnte zum Beispiel für die Herstellung neuartiger Beschichtungen interessant sein. Die Wissenschaftler veröffentlichen ihre Ergebnisse in der aktuellen Ausgabe des Journal of the American Chemical Socity (DOI: 10.1021/ja4052334). [...]
  • Dr. Melanie Timpel hat in ihrer Doktorarbeit gezeigt, wie Strontium moderne Leichtbaulegierungen veredeln kann.
    Science Highlight
    08.08.2013
    Acta Student Award für Melanie-Timpel
    Dr. Melanie Timpel hat für ihren Beitrag in der Zeitschrift Acta Materialia den „Acta Materialia Student Award 2012“, der  mit einem Preisgeld in Höhe von 2000 US-Dollar dotiert ist, erhalten. Dieser Preis gilt als hohe Auszeichnung für junge Wissenschaftler. Die Preisübergabe findet im Rahmen der Konferenz Material Science & Technology (MS&T) am 28.10.2013 in Montreal, Kanada statt. [...]
  • Ein optischer Laserblitz (rot) zerstört die elektronische Ordnung (blau) in Magnetit und schaltet den Zustand des Material innerhalb eines Billionstels einer Sekunde von isolierend zu leitend um.
    Science Highlight
    29.07.2013
    Pikosekunden schnelle Zeitlupe belegt: Oxid-Materialien schalten deutlich schneller als Halbleiter
    Ein internationales Forscherteam unter maßgeblicher Beteiligung von Wissenschaftlern des Helmholtz-Zentrum Berlin (HZB) beobachtet den Schaltprozess zwischen nichtleitendem und leitendem Zustand in Eisenoxid (Magnetit) mit bislang unerreichter Präzision. In der aktuellen online-vorab-Ausgabe der Zeitschrift Nature Materials (DOI: 10.1038/NMAT3718) beschreiben sie, dass der Schaltprozess in einem Oxid in zwei Stufen abläuft und mehrere tausend Mal schneller ist als in heute üblichen Transistoren. [...]
  • <p>Elementarste Prozesse im Rampenlicht: Donor- und Akzeptorbindungseigenschaften des Modellkatalysators [Fe(CO)5] in L&ouml;sung werden mithilfe von resonanter inelastischer R&ouml;ntgenstreuung untersucht. </p>
    Science Highlight
    25.07.2013
    Katalysatoren bei der Arbeit zugeschaut – auf atomarer Ebene
    Innovative Methodenkombination am HZB führt zu grundlegenden Erkenntnissen in der Katalyseforschung [...]
  • <p>Das Wachstum der Schichten l&auml;sst sich &uuml;ber in-situ R&ouml;ntgenstreuung und Fluoreszenzsignale analysieren.</p>
    Science Highlight
    27.06.2013
    Solarzellen beim Wachsen zusehen
    Erstmals ist es Wissenschaftlern um Dr. Roland Mainz und Dr. Christian Kaufmann am HZB gelungen, das Wachstum von hocheffizienten Chalkopyrit-Dünnschichtsolarzellen in Echtzeit zu beobachten und zu untersuchen, wie sich Defekte und Fehlstellen bilden und auflösen, die den Wirkungsgrad mindern können. Sie haben dafür eine Messkammer am Berliner Elektronenspeicherring BESSY II entwickelt, in der sie verschiedene Messmethoden kombinieren können. Ihre Ergebnisse zeigen, in welchen Stadien das Wachstum beschleunigt werden könnte und wann mehr Zeit wichtig ist, um Defekte zu reduzieren. Die Arbeit wurde nun in den Advanced Energy Materials online veröffentlicht. [...]
  • <p>Die verwendeten Modell-Kolloide: etwa 150 Nanometer kleine Partikel in Wasser. Der feste Kern besteht aus dem Kunststoff Polystyrol, die umgebende Schale aus einem thermosensitiven Netzwerk aus Poly(N-isopropyl-acrylamid). Durch Senken der Temperatur l&auml;sst sich das Volumen der einzelnen Partikel &ndash; und damit auch deren Packungsdichte &ndash;erh&ouml;hen. Foto: HZB/M. Siebenb&uuml;rger</p>
    Science Highlight
    28.05.2013
    Glasklare Methode, um Glas von Flüssigkeit zu unterscheiden
    Viele feste Materialien werden aus der Schmelze heraus produziert. Je nachdem wie rasch die Abkühlung verläuft, bauen sich dabei innere Spannung auf. Ein Beispiel sind die Prinz-Rupert-Tropfen oder Bologneser Tränen: Ihr dickes Ende hält sogar Hammerschlägen stand,  während schon ein leichter Druck am dünnen Ende die gesamte Träne zerspringen lässt. Auch die Eigenschaften von Sicherheitsglas und Gorillaglas werden durch innere Vorspannungen bestimmt. Doch bislang war kaum verstanden, welche Besonderheiten der Glaszustand im Vergleich zu einer zähen Schmelze aufweist. Mit einem überraschend einfachen Modell hat nun eine große Kooperation aus mehreren Forschungsteams aus Deutschland und Kreta erklären können, was Glas und Schmelze voneinander unterscheidet. [...]
  • Science Highlight
    15.05.2013
    Zwei Humboldt-Stipendiaten forschen am HZB: In der neuen Lichtblick stellen wir Jan Heyda und Stefano Angioletti-Uberti vor
    Die Qualität des Alexander-von-Humboldt-Stipendiums ist weltweit anerkannt. Die Nachwuchswissenschaftler Stefano Angioletti-Uberti und Jan Heyda haben sich für dieses Stipendium entschieden, obwohl sie gleich mehrere Angebote für einen Forschungsaufenthalt im Ausland bekommen hatten. Beide forschen am HZB-Institut für Weiche und Funktionale Materialien bei Joachim Dzubiella. Sie interessieren sich für stimuli-responsive Polymaterialien. Wir stellen sie in der neuen Ausgabe der Lichtblick vor. [...]
  • <p></p>
    Science Highlight
    27.03.2013
    Magnetischer Fingerabdruck von Grenzflächendefekten im Photostrom von Siliziumsolarzellen gefunden
    HZB-Physiker haben mit einer hochempfindlichen Messmethode an Heterokontakt-Siliziumsolarzellen erstmals wichtige Defektzustände direkt nachgewiesen, denen man schon lange auf der Spur war. Unterstützt durch Computersimulationen, die an der Universität Paderborn erstellt wurden, konnten sie nun die Natur dieser Defekte mit atomarer Genauigkeit bestimmen. Die Defekte lagern sich genau an der Grenze zwischen dem Siliziumwafer und der nur wenige Nanometer dünnen Schicht aus amorphem Silizium an. [...]
  • <p>Die Kurven zeigen, wie sich mit zunehmender Dotierung in der halbleitenden Schicht das Transistorverhalten drastisch verbessert. Als Ursache machten die Forscher die Bildung leitf&auml;higer Perkolationspfade aus, die den Transport von Ladungen entlang des Transistorkanals erm&ouml;glichen.</p>
    Science Highlight
    13.03.2013
    Schwache Dotierung verbessert polymerbasierte Feldeffekttransistoren
    In der organischen Elektronik haben sich Mischsysteme, in denen halbleitende Makromoleküle in einer isolierenden Polymermatrix eingebettet sind, als besonders geeignet für die Herstellung von  Transistoren erwiesen. Bislang waren die Gründe dafür nicht genau bekannt. Nun konnten Wissenschaftler aus mehreren Forschungseinrichtungen die komplexe Morphologie dieser Mischsysteme aufklären und damit die elektronischen Eigenschaften erklären. [...]
  • <p>Die Forscher haben in einer Computersimulation Bewegungen <br />und Kr&auml;fte zwischen Wassermolek&uuml;len (kleine, rot-wei&szlig;e &bdquo;Dipole&ldquo;) <br />, runden Liganden (gr&uuml;n) und einer wasserabsto&szlig;enden Hohlform<br />in einem Proteinmolek&uuml;l berechnet.</p>
    Science Highlight
    16.01.2013
    Schloss-Schlüssel-Passung wird durch Wasserfluktuationen moderiert
    HZB-Forscher zeigen, dass Wasser beim Transport von pharmazeutischen Wirkstoffen mehr ist als nur ein Lösungsmittel [...]
  • Science Highlight
    21.05.2008
    Towards imaging ultrafast evolution in a single shot

    Research carried out by BESSY scientists in collaboration with colleagues from SLAC and SOLEIL has been featured as Editors’ Choice in the Nov. 23 issue of the Science Magazine. In the Optics Letters article by W. F. Schlotter et al., multiplexed x-ray holograms generated simultaneously from many objects are presented. The feasibility of this approach implies that ultrafast pump-probe time sequences can be recorded with free electron x-ray lasers in this way. [...]