Innovative Batterie-Elektrode aus Zinn-Schaum

Zinn lässt sich zu einem hochporösen Schaum verarbeiten. Wie dieser Zinn-Schaum (abgebildet) sich als Batterieelektrode verhält, hat ein interdisziplinäres Team am HZB untersucht.

Zinn lässt sich zu einem hochporösen Schaum verarbeiten. Wie dieser Zinn-Schaum (abgebildet) sich als Batterieelektrode verhält, hat ein interdisziplinäres Team am HZB untersucht. © B. Bouabadi / HZB

Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.

Moderne Lithium-Ionen-Batterien setzen in der Regel auf eine mehrschichtige Graphit-Elektrode, während die Gegenelektrode oft aus Kobaltoxid besteht. Beim Laden und Entladen wandern Lithium-Ionen in das Graphit ein, ohne signifikante Volumenänderungen des Materials zu verursachen. Die Kapazität von Graphit ist jedoch begrenzt, die Suche nach alternativen Materialien wird dadurch zu einem spannenden Forschungsgebiet. So bieten Metallbasierte Elektroden, beispielsweise aus Aluminium oder Zinn, potenziell eine höhere Kapazität. Allerdings neigen sie bei der Lithiumaufnahme zu einer deutlichen Volumenausdehnung, was mit Strukturveränderungen und Materialermüdung verbunden ist.

Eine Option, um Metall-Elektroden zu realisieren, die weniger rasch „ermüden“, besteht in der Nanostrukturierung der dünnen Metallfolien. Eine andere Option ist die Anwendung von porösen Metallschäumen. Als Metall ist Zinn besonders attraktiv, denn es besitzt eine fast dreimal höhere Kapazität pro Kilogramm als Graphit und ist darüber hinaus kein seltener Rohstoff sondern reichlich vorhanden.

Ein Forschungsteam aus dem Helmholtz-Zentrum Berlin (HZB) hat nun verschiedene Arten von Zinnelektroden während des Entlade- und Ladevorgangs mit operando Röntgenbildgebung untersucht, und einen innovativen Ansatz entwickelt, um diesem Problem zu begegnen. Ein Teil dieser Untersuchungen fand dabei an der BAMline an BESSY II statt. Außerdem entstanden hochaufgelöste radioskopische-Röntgen-Aufnahmen in Zusammenarbeit mit den Imaging-Experten Dr. Nikolai Kardjilov und Dr. André Hilger am HZB. „Auf diese Weise konnten wir die strukturellen Veränderungen in den untersuchten Elektroden auf Sn-Metallbasis während der Lade-/Entladevorgänge verfolgen“, sagt Dr. Bouchra Bouabadi, die die experimentelle Studie durchgeführt hat. In Zusammenarbeit mit dem Batterieexperten Dr. Sebastian Risse zeigt sie, wie sich die Morphologie der Zinnelektroden während des Betriebs durch die inhomogene Aufnahme von Lithium-Ionen verändert.

Die beste Variante der Zinn-Elektrode fertigte Dr. Francisco Garcia-Moreno an: Einen Schaum aus Zinn mit unzähligen, mikrometergroßen Poren. „Wir konnten zeigen, dass in einem solchen Zinn-Schaum deutlich weniger mechanischer Stress während der Volumenausdehnung auftritt“, sagt Dr. Risse. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.

Garcia-Moreno hat bereits zahlreiche Metallschäume untersucht, darunter auch solche für Bauteile in der Automobilindustrie und Aluminiumschäume für Batterieelektroden. „Die von uns an der TU Berlin entwickelten Zinnschäume sind hochporös und eine interessante Alternative zu traditionellen Elektrodenmaterialien“, sagt er. Dabei sei die Strukturierung von Zinnschäumen entscheidend, um mechanische Belastung maximal zu reduzieren. Auch aus wirtschaftlicher Sicht könnte die Zinn-Schaum-Technologie interessant sein: „Obwohl Zinnschaum teurer ist als herkömmliche Zinnfolien, bietet er eine kostengünstigere Alternative zu teuren Nanostrukturierungen, während er gleichzeitig deutlich mehr Lithium-Ionen speichern kann und damit eine Steigerung der Kapazität ermöglicht.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Science Highlight
    21.02.2025
    Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.
  • Leitender Sasol-Forscher kommt als Industrial Research Fellow ans HZB
    Nachricht
    11.02.2025
    Leitender Sasol-Forscher kommt als Industrial Research Fellow ans HZB
    Das HZB arbeitet mit dem südafrikanischen Unternehmen Sasol im Projekt CARE-O-SENE an nachhaltigem Kerosin für die Luftfahrt (SAF) und entwickelt dafür innovative Katalysatoren. Nun verstärkt sich die Zusammenarbeit: Mit Dr. Denzil Moodley kommt ein leitender Wissenschaftler aus dem Bereich Fischer-Tropsch bei Sasol Research and Technology an das HZB. Moodley wird am HZB seine Expertise einbringen, mit dem Ziel, den Innovationszyklus für nachhaltige Kraftstofftechnologien zu beschleunigen.