Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität

Im Experiment wurden Perowskit-Solarzellen immer wieder von Raumtemperatur auf minus 150 Grad Celsius abgekühlt und dann bis plus 150 Grad Celsius erhitzt. Dabei wurde untersucht, wie sich Mikrostrukturen in der Perowskitschicht und Wechselwirkungen mit den benachbarten Schichten im Lauf der Zyklen verändern.

Im Experiment wurden Perowskit-Solarzellen immer wieder von Raumtemperatur auf minus 150 Grad Celsius abgekühlt und dann bis plus 150 Grad Celsius erhitzt. Dabei wurde untersucht, wie sich Mikrostrukturen in der Perowskitschicht und Wechselwirkungen mit den benachbarten Schichten im Lauf der Zyklen verändern. © Li Guixiang

Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.

Perowskite sind eine Materialklasse mit halbleitenden Eigenschaften, die sich hervorragend für die Energieumwandlung in einer Solarzelle eignen: Die besten von ihnen, die Metall-Halogenid-Perowskite, liefern bereits Wirkungsgrade von bis zu 27 %. Die Herstellung solcher Dünnschicht-Solarzellen erfordert extrem wenig Material und Energie, sodass Solarenergie erheblich günstiger werden könnte. Bei der Verwendung im Freien sollten Solarmodule jedoch mindestens 20 bis 30 Jahre lang einen nahezu stabilen Ertrag liefern. Und hier gibt es bei Perowskit-Materialien noch viel Raum für Verbesserungen.

Review-Beitrag mit Ergebnissen aus mehreren Jahren

Eine internationale Forschungskooperation unter der Leitung von Prof. Antonio Abate hat nun die Ergebnisse mehrjähriger Arbeit in einem Übersichtsartikel in der renommierten Fachzeitschrift Nature Reviews Materials veröffentlicht. Gemeinsam mit einem Team unter der Leitung von Prof. Meng Li, Henan University, China, und weiteren Partnern in Italien, Spanien, Großbritannien, der Schweiz und Deutschland zeigen sie, dass thermische Spannungen der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind.

Temperaturschwankungen im Außeneinsatz

„Durch eine Verkapselung können die Zellen zwar effektiv vor Feuchtigkeit und Luftsauerstoff geschützt werden, dennoch sind sie im Außeneinsatz dann Tag und Nacht sowie über die Jahreszeiten großen Temperaturschwankungen ausgesetzt“, sagt Abate. Je nach geografischen Bedingungen können die Temperaturen im Inneren der Solarzellen zwischen minus 40 Grad Celsius und plus 100 Grad Celsius (z. B. in der Wüste) liegen.

Temperaturzyklen im Experiment

Um dies zu simulieren, wurden die Perowskit-Solarzellen in der Studie noch deutlich extremeren Temperaturunterschieden ausgesetzt: Von minus 150 Grad Celsius bis plus 150 Grad Celsius, und das immer wieder. Dr. Guixiang Li (damals Postdoc am HZB, heute Professor an der Southeast University, China) untersuchte, wie sich die Mikrostruktur innerhalb der Perowskitschicht während der Zyklen veränderte und inwieweit sich auch Wechselwirkungen mit den benachbarten Schichten im Lauf der Temperaturzyklen veränderten.

Abnehmende Leistung

Dadurch sank auch die Leistung der Zelle. Insbesondere verursachten die großen Temperaturschwankungen  thermische Spannungen, sowohl innerhalb des Perowskit-Dünnfilms als auch zwischen den verschiedenen angrenzenden Schichten: „In einer Perowskit-Solarzelle müssen Schichten aus sehr unterschiedlichen Materialien in perfektem Kontakt stehen; leider haben diese Materialien oft ein recht unterschiedliches thermisches Verhalten“, erklärt Abate. Kunststoffe neigen beispielsweise dazu, bei Erwärmung zu schrumpfen, während anorganische Materialien sich eher ausdehnen. Dadurch wird der Kontakt zwischen den Schichten mit jedem Zyklus schlechter. Darüber hinaus untersuchte das Team auch lokale Phasenübergänge und die Diffusion von Elementen in benachbarte Schichten.

Neue Ansätze

Daraus leiteten die Forschenden eine Strategie ab, um die Langzeitstabilität von Perowskit-Solarzellen zu erhöhen. „Thermische Belastung ist der Schlüssel“, sagt Abate. Es geht vor allem darum, die Perowskit-Strukturen und die angrenzenden Schichten stabiler gegen thermische Belastungen zu machen, beispielsweise durch die Erhöhung der kristallinen Qualität, aber auch durch geeignete Pufferschichten. Um die Stabilität bei Temperaturwechseln einheitlich und korrekt zu ermitteln, sind standardisierte Testprotokolle nötig.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.