Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert

An BESSY II wurde beobachtet, wie Röntgenphotonen einen „molekularen Katapulteffekt“ auslösen: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse aus einem Katapult, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen. Das Bild wurde auf dem Cover von "The Journal of Physical Chemistry Letters" abgedruckt.

An BESSY II wurde beobachtet, wie Röntgenphotonen einen „molekularen Katapulteffekt“ auslösen: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse aus einem Katapult, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen. Das Bild wurde auf dem Cover von "The Journal of Physical Chemistry Letters" abgedruckt. © The Journal of Physical Chemistry Letters

Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.

 

Treffen Röntgenstrahlen auf Moleküle, können sie Elektronen aus bestimmten Orbitalen in extrem energiereiche Zustände versetzen, wodurch chemische Bindungen aufbrechen. Dies geschieht oft extrem schnell, in nur wenigen Femtosekunden (10-15s). Dieses Phänomen wurde bereits bei leichten Molekülen wie Ammoniak, Sauerstoff, Salzsäure oder einfachen Kohlenstoffverbindungen untersucht, aber bisher noch kaum bei Molekülen mit schwereren Atomen.

Ein Team aus Frankreich und Deutschland hat nun den schnellen Zerfall von Molekülen untersucht, die Halogene enthalten. Sie konzentrierten sich auf ein Molekül, in dem Brom- und Chloratome durch eine leichte eine Alkylengruppe (CH2) verbunden sind. Die Messungen fanden an der XUV-Beamline von BESSY II statt.

Durch die Absorption des Röntgenlichts brachen Molekülbindungen auf und ionische Fragmente entstanden, die analysiert werden konnten. Tatsächlich gelang es den Forschenden, aus den Messdaten eine Visualisierung des Prozesses zu erstellen. Sie zeigt, wie sich Atome in den flüchtigen Zwischenzuständen bewegen, kurz bevor die Bindungen wirklich aufbrechen. Dafür entwickelte das Team eine neue Analysemethode namens IPA (Ion Pair Average) und kombinierte sie mit theoretischen Ab-initio-Berechnungen, um die Prozesse zu rekonstruieren.

Die Ergebnisse zeigten, dass leichte Atomgruppen wie CH2 zuerst ausgestoßen werden, während die schwereren Atome – Brom und Chlor – zurückbleiben und sich folglich langsamer trennen. Interessanterweise tritt dieses katapultartige Verhalten nur bei bestimmten Röntgenenergien auf. Theoretische Simulationen, die mit experimentellen Beobachtungen übereinstimmen, unterstreichen die entscheidende Rolle von Schwingungen der leichteren Atomgruppen bei der Auslösung dieser ultraschnellen Reaktionen.

„Diese Studie beleuchtet die einzigartige Dynamik der molekularen Dissoziation unter Röntgenbestrahlung“, sagt Dr. Oksana Travnikova (CNRS, Université Sorbonne, Frankreich), Erstautorin der Studie, die nun in J. Phys. Chem. Lett. erschienen ist. Insbesondere zeigt sie, dass die katapultartige Bewegung leichter Gruppen die Trennung schwerer Fragmente einleitet, ein Prozess, der sich in bemerkenswert kurzen Zeiträumen entfaltet. Diese Erkenntnisse vertiefen das Verständnis von chemischen Reaktionen auf molekularer Ebene und zeigen, wie sich energiereiche Strahlung auf komplexe Moleküle auswirkt.

CCdM/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.