Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien

Prof. Dr. Judith Reindl und Doktorandin Aikaterini Rousseti (v.l.n.r) von der Universität der Bundeswehr München stellen den Experimentierplatz vor, der an der neuen Minibee-Beamline am HZB eingebaut wird. Hier werden Experimente an biologischen Proben mit unterschiedlich eingestellten Protonenstrahlen stattfinden.

Prof. Dr. Judith Reindl und Doktorandin Aikaterini Rousseti (v.l.n.r) von der Universität der Bundeswehr München stellen den Experimentierplatz vor, der an der neuen Minibee-Beamline am HZB eingebaut wird. Hier werden Experimente an biologischen Proben mit unterschiedlich eingestellten Protonenstrahlen stattfinden. © Kevin Fuchs / HZB

Magnetische Quadrupole fokussieren den Protonenstrahl vor der Experimentplattform.

Magnetische Quadrupole fokussieren den Protonenstrahl vor der Experimentplattform. © Kevin Fuchs / HZB

Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.

 

Der Protonenbeschleuniger des Helmholtz-Zentrum Berlin (HZB) ist seit gut 25 Jahren gegen spezielle Tumorerkrankungen des Auges im Einsatz. Bisher haben schon über 4800 Menschen von der Augentumor-Therapie mit Protonen profitiert, die gemeinsam mit der Charité – Universitätsmedizin Berlin durchgeführt wird.

Nun bietet der Protonenbeschleuniger am HZB zusätzlich auch die Option, präklinische Forschung durchzuführen: Dazu wurde gemeinsam mit der Universität der Bundeswehr München eine Mini- Beamline for preclinical Experiments (Minibee) errichtet. Die Abteilung Protonentherapie des HZB hat die Strahlführung und die Ansteuerung für die Minibeams gebaut. Die Universität der Bundeswehr München mit Prof. Judith Reindl vom Institut für Angewandte Physik und Messtechnik sowie der Sektion Biomedizinische Strahlenphysik installierte eine Plattform zur bildgeführten Bestrahlung von biologischen Proben. Dadurch werden künftig gemeinsame Experimente zur Radiobiologie und innovativer Strahlentherapie möglich.

„An Minibee können wir aus der medizinischen Forschung untersuchen, wie sich veränderte Parameter und Einstellungen des Protonenstrahls auf die Behandlung auswirken“, sagt Judith Reindl. Unter anderem soll Minibee ultrakurze Protonenblitze (FLASH-Therapie) erzeugen, oder nadelfeine Strahlung (Beamlets). „Es geht uns darum, neue Methoden zu entwickeln, die den Tumor effektiv zerstören und gleichzeitig das gesunde Gewebe noch besser schützen“, sagt Prof. Dr. Andrea Denker, die die Abteilung Protonentherapie am HZB leitet.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.