BESSY II zeigt, wie sich Feststoffbatterien zersetzen

Rasterelektronenmikroskopische Aufnahmen des LPSCl-Pellets vor (links) und nach (rechts) dem operando-HAXPES-Experiment.

Rasterelektronenmikroskopische Aufnahmen des LPSCl-Pellets vor (links) und nach (rechts) dem operando-HAXPES-Experiment. © 10.1021/acsenergylett.4c01072

Die Illustration zeigt den Aufbau des operando HAXPES Experiments (links). Rechts davon ist die vergrößerte Illustration der operando-Messzelle zu sehen.

Die Illustration zeigt den Aufbau des operando HAXPES Experiments (links). Rechts davon ist die vergrößerte Illustration der operando-Messzelle zu sehen. © 10.1021/acsenergylett.4c01072

Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

Feststoffbatterien verwenden zwischen den Elektroden einen festen Ionenleiter anstelle eines flüssigen Elektrolyten, um den Transport von Lithium zu ermöglichen. Dies hat Vorteile, zum Beispiel eine höhere Sicherheit während des Betriebs und eine höhere Kapazität. Allerdings ist die Lebensdauer von Festkörperbatterien bislang noch sehr begrenzt. Denn an den Grenzflächen zwischen Elektrolyt und Elektrode bilden sich Zersetzungsprodukte und Zwischenphasen, die den Transport der Lithium-Ionen behindern und zu einem Verbrauch von aktivem Lithium führen, so dass die Kapazität der Batterien mit jedem Ladezyklus abnimmt.

Unter welchen Bedingungen finden Reaktionen statt?

Nun hat ein Team um die HZB-Forscher Dr. Elmar Kataev und Prof. Marcus Bär einen neuen Ansatz entwickelt, um die elektrochemischen Reaktionen an der Grenzfläche zwischen Festelektrolyt und Elektrode mit hoher zeitlicher Auflösung zu analysieren. "Unter welchen Bedingungen und bei welcher Spannung finden solche Reaktionen statt, und wie entwickelt sich die chemische Zusammensetzung dieser Zwischenphasen während des Zellbetriebs?" erläutert Kataev die Forschungsfragen.

Der beste Feststoffelektrolyt unter der Lupe

Für die Studie analysierten sie Proben des Festelektrolyten Li6PS5Cl, ein Material, das aufgrund seiner hohen Ionenleitfähigkeit als bester Kandidat für Feststoffbatterien gilt. Dabei arbeiteten sie eng mit dem Team des Batterieexperten Professor Jürgen Janek von der Justus-Liebig-Universität Gießen (JLU Gießen) zusammen. Als Arbeitselektrode diente eine hauchdünne Schicht aus Nickel (30 Atomlagen oder 6 Nanometer). Auf die andere Seite des Li6PS5Cl-Pellets wurde ein Lithiumfilm gepresst, der als Gegenelektrode diente.

Harte Röntgen-Photoelektronenspektroskopie an BESSY II

Um die Grenzflächenreaktionen und die Bildung einer Zwischenschicht (SEI) in Echtzeit und in Abhängigkeit von der angelegten Spannung zu analysieren, nutzte Kataev die Methode der harten Röntgen-Photoelektronenspektroskopie (HAXPES) mit den analytischen Möglichkeiten des Energy Materials In-situ Laboratory Berlin (EMIL) an BESSY II: Röntgenstrahlen treffen dabei auf die Probe, regen die Atome darin an und die emittierten Photoelektronen in Abhängigkeit von der angelegten Zellspannung und der Zeit geben Aufschluss über die Reaktionsprodukte. Die Ergebnisse zeigen, dass die Zersetzungsreaktionen nur teilweise reversibel sind.

Methode auch für andere Batteriematerialien interessant

"Wir zeigen, dass es möglich ist, mit einem ultradünnen Stromkollektor die elektrochemischen Reaktionen an den vergrabenen Grenzflächen mit Methoden der Oberflächencharakterisierung zu untersuchen", sagt Kataev. Das HZB-Team hat bereits Anfragen von Forschergruppen aus dem In- und Ausland erhalten, die ebenfalls an diesem Charakterisierungsansatz interessiert sind. In einem nächsten Schritt will das HZB-Team diesen Ansatz erweitern und auch Batterien mit Polymerelektrolyten und verschiedenen Anoden- und Kathodenmaterialien untersuchen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Durchbruch: Erster Elektronenstrahl im SEALab bringt Beschleunigerphysik voran
    Nachricht
    03.04.2025
    Durchbruch: Erster Elektronenstrahl im SEALab bringt Beschleunigerphysik voran
    Weltweit zum ersten Mal hat das SEALab-Team am HZB in einem supraleitenden Hochfrequenzbeschleuniger (SRF Photoinjektor) einen Elektronenstrahl aus einer Multi-Alkali-Photokathode (Na-K-Sb) erzeugt und auf relativistische Energien beschleunigt. Dies ist ein echter Durchbruch und eröffnet neue Optionen für die Beschleunigerphysik.

     

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.