Dynamische Messungen in Flüssigkeiten jetzt auch im Labor

Die gestrichelten Linien markieren das erste dünne Flüssigkeits-‚Blatt‘, in dem Moleküle gelöst sind. Im oberen Teil befinden sich zwei Düsen, im unteren Teil ein Auffangbehälter (Bild links). Das Bild in der Mitte zeigt die Transmission des Flachstrahls. Rechts ist das Spektrum der Probe auf dem CCD-Detektor zu sehen.

Die gestrichelten Linien markieren das erste dünne Flüssigkeits-‚Blatt‘, in dem Moleküle gelöst sind. Im oberen Teil befinden sich zwei Düsen, im unteren Teil ein Auffangbehälter (Bild links). Das Bild in der Mitte zeigt die Transmission des Flachstrahls. Rechts ist das Spektrum der Probe auf dem CCD-Detektor zu sehen. © HZB

Ein Team aus Berliner Forscher*innen hat ein Laborspektrometer entwickelt, um chemische Prozesse in Lösung zu analysieren – und das mit 500 ps Zeitauflösung. Dies ist nicht nur für die Forschung an molekularen Prozessen in der Biologie interessant, sondern auch für die Entwicklung von neuartigen Katalysatormaterialien. Bisher war dafür allerdings meist Synchrotronstrahlung erforderlich, wie sie nur an großen, modernen Röntgenquellen wie BESSY II zur Verfügung steht. Nun funktioniert das Verfahren mit einer Plasmalichtquelle im Labormaßstab.

„Durch unseren Laboraufbau wird diese Messmethode nun für eine breitere Community zugänglich“, sagt HZB-Physikerin Dr. Ioanna Mantouvalou, die die Entwicklung zusammen mit Partnern aus der Technischen Universität Berlin, dem Max-Born-Institut, der Physikalisch-Technischen Bundesanstalt sowie der Firma Nano Optics Berlin vorangetrieben hatte. „Die Labormessungen können in einem ersten Schritt auch genauer umgrenzen, wo weitere Analysen an Synchrotronquellen sinnvoll und vielversprechend sind. Dadurch werden knappe Ressourcen besser genutzt“, sagt Mantouvalou.

Zeitaufgelöste Röntgenspektroskopie im „weichen“ Energiebereich bietet Zugang zu Eigenschaften von organischen Materialien und ist damit ideal, um dynamische Veränderungen in der Elektronenstruktur einzelner Elemente in ungeordneten Systemen zu untersuchen. Messungen von flüssigen Lösungen, in denen diese Moleküle oder Komplexe gelöst sind, sind jedoch besonders anspruchsvoll. Sie erfordern einen hohen Photonenfluss und extrem geringes Rauschen. Daher sind diese Experimente meist auf Großgeräte wie moderne Synchrotronlichtquellen beschränkt.

Das neue Labormessgerät nutzt dagegen Licht eines Plasmas, welches durch die Interaktion von einem intensiven Laserpuls mit Metall entsteht. Das neue Instrument ermöglicht Zeitauflösungen von 500 Pikosekunden. Die neu entwickelte Detektionsmethode ermöglicht eine sehr „stabile“ Detektion. „Dies konnten wir in unserer Studie an zwei Beispielen in wässriger Lösung demonstrieren. Wir haben dafür die Metall-Komplexverbindungen [Ni(CN)4]2- und [Fe(bpy)3]2+ untersucht“, sagt Richard Gnewkow, Erstautor und Doktorand im Team von Mantouvalou.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.