BESSY II: Lokale Variationen in der Struktur von hochentropischen-Legierungen

Die Auswertung der EXAFS-Daten zeigte, dass die Glühtemperatur der Cantor-Legierung sich auf lokale Umgebungen der Elemente auswirkt. Dies deutet auf unterschiedliche Ordnungs- und Diffusionsprozesse hin. Mangan diffundiert am schnellsten im Hochtemperaturzustand, Nickel im Niedrigtemperaturzustand.

Die Auswertung der EXAFS-Daten zeigte, dass die Glühtemperatur der Cantor-Legierung sich auf lokale Umgebungen der Elemente auswirkt. Dies deutet auf unterschiedliche Ordnungs- und Diffusionsprozesse hin. Mangan diffundiert am schnellsten im Hochtemperaturzustand, Nickel im Niedrigtemperaturzustand. © HZB

Hochentropie-Legierungen halten extremer Hitze und Belastung stand und eignen sich daher für eine Vielzahl spezifischer Anwendungen. Einblicke in Ordnungsprozesse und Diffusionsphänomene in diesen Materialien hat nun eine neue Studie an der Röntgenquelle BESSY II geliefert. An der Studie waren Teams des HZB, der Bundesanstalt für Materialforschung und -prüfung, der Universität Lettland und der Universität Münster beteiligt.

Das Team analysierte Proben einer sogenannten Cantor-Legierung, die aus fünf 3d-Elementen besteht: Chrom, Mangan, Eisen, Kobalt und Nickel. Die kristallinen Proben (kubisch-flächenzentriert, fcc) wurden bei zwei verschiedenen Temperaturen geglüht, entweder bei 1373 Kelvin (Hochtemperaturzustand,HT) oder bei 993 Kelvin (Tieftemperaturzustand, LT) und dann schockgefroren.

Um die lokalen Umgebungen der einzelnen Elemente in den Proben zu analysieren, nutzte das Team eine gut etablierte Methode der Röntgenabsorptionsspektroskopie, die elementspezifisch ist (EXAFS). Mit einer Reverse Monte Carlo (RMC) Analyse gelang es, die Messdaten zu interpretieren.

"Auf diese Weise konnten wir sowohl qualitativ als auch quantitativ die Besonderheiten der charakteristischen lokalen Umgebungen der Hauptkomponenten der Legierung auf atomarer Ebene aufklären", erklärt Dr. Alevtina Smekhova vom HZB. Die spektroskopischen Ergebnisse geben insbesondere auch Aufschluss über die Diffusionsprozesse in der Hochentropie-Legierung. So wurde direkt nachgewiesen, dass das Element Mangan in den HT-Proben am schnellsten diffundiert.  Das Element Nickel diffundiert dagegen in den LT-Proben schneller, wie es auch aus früheren Diffusionsexperimenten bekannt war. „Diese Ergebnisse helfen, die Beziehung zwischen der lokalen atomaren Umgebung und den makroskopischen Eigenschaften in diesen Legierungen besser zu verstehen“, sagt Smekhova.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.