Quantitative Analyse von zellulären Organellen mit Künstlicher Intelligenz

Die Bilder zeigen einen Teil einer gefrorenen Säugetierzelle. Links ist ein Ausschnitt aus dem 3D-Röntgentomogramm zu sehen (Maßstab: 2 μm). Die rechte Abbildung zeigt das rekonstruierte Zellvolumen nach Anwendung des neuen KI-gestützten Algorithmus.

Die Bilder zeigen einen Teil einer gefrorenen Säugetierzelle. Links ist ein Ausschnitt aus dem 3D-Röntgentomogramm zu sehen (Maßstab: 2 μm). Die rechte Abbildung zeigt das rekonstruierte Zellvolumen nach Anwendung des neuen KI-gestützten Algorithmus. © HZB /FU Berlin

Die Röntgenmikroskopie (Kryo-SXT) ermöglicht hochaufgelöste Einblicke in das Innere von Zellen und Zellorganellen – und das in drei Dimensionen. Bisher wurden die 3D-Datensätze zeitaufwändig manuell analysiert. Nun hat ein Team der Freien Universität Berlin einen Algorithmus entwickelt, der auf einem „gefalteten“ neuronalen Netz basiert. Mit Expertinnen und Experten aus der Zellbiologie (FU Berlin) und der Röntgenmikroskopie am Helmholtz Zentrum Berlin wurde dieser Algorithmus nun erstmals zur Analyse von Zellbestandteilen in Kryo-SXT-Datensätzen eingesetzt. Mit der KI-basierten Analysemethode konnte innerhalb weniger Minuten Zellorganellen identifiziert und detailstarke, komplexe 3D-Abbildungen produziert werden.

Mit dem hochbrillanten Röntgenlicht von BESSY II lassen sich Mikroskopie-Aufnahmen mit räumlicher Auflösung bis hin zu einigen zehn Nanometern erstellen. Dabei können ganze Zellvolumina untersucht werden, ohne dass eine aufwendige Probenvorbereitung wie bei der Elektronenmikroskopie nötig wäre. Unter dem Röntgenmikroskop erscheinen die winzigen Zellorganellen mit ihren feinen Strukturen und Grenzmembranen deutlich und detailliert, sogar in drei Dimensionen. Daher eignet sich die Kryo-Röntgentomografie hervorragend, um Veränderungen in den Zellstrukturen zu untersuchen, die zum Beispiel durch externe Auslöser verursacht werden. Die Auswertung der 3D-Tomogramme erforderte jedoch bisher eine weitestgehend manuelle und arbeitsintensive Datenanalyse. Um dieses Problem zu überwinden, haben nun Teams um den Informatiker Prof. Dr. Frank Noé und den Zellbiologien Prof. Dr. Helge Ewers (beide Freie Universität Berlin) mit der Abteilung Röntgenmikroskopie am HZB zusammengearbeitet. Dabei entwickelte das Informatik-Team einen neuartigen, selbstlernenden Algorithmus. Diese KI-basierte Analysemethode basiert auf der automatisierten Erkennung subzellularer Strukturen und beschleunigt die quantitative Analyse der 3D-Röntgendatensätze. Die Aufnahmen der 3D-Bilder zur Untersuchung des Inneren von biologischen Proben wurden an der U41-Beamline an BESSY II durchgeführt.

„Wir haben in dieser Studie nun gezeigt, wie gut die KI-gestützte Analyse von Zellvolumina funktioniert, und zwar an Säugetierzellen aus Zellkulturen, die so genannte Filopodien besitzen“, sagt Dr. Stephan Werner, Experte für Röntgenmikroskopie am HZB. Säugetierzellen besitzen einen komplexen Aufbau mit vielen unterschiedlichen Zellorganellen, die jeweils andere zelluläre Funktionen erfüllen müssen. Filopodien sind dabei Ausstülpungen der Zellmembran und dienen insbesondere der Zellmigration. „Für die Kryo-Röntgenmikroskopie werden die Zellproben zunächst schockgefrostet, und zwar so rasch, dass sich im Inneren der Zelle keine Eiskristalle bilden. Dadurch sind die Zellen in einem nahezu natürlichen Zustand und wir können den strukturellen Einfluss externer Faktoren im Zellinneren studieren“, erklärt Werner.

KI-basierte Analysemethode schneller und und zuverlässiger

„Unsere Arbeit hat bereits erhebliches Interesse in der Fachwelt geweckt“, sagt Erstautor Michael Dyhr von der Freien Universität Berlin. Das neuronale Netz erkennt innerhalb kürzester Zeit etwa 70% der vorhandenen Zellmerkmale korrekt und ermöglicht damit eine sehr rasche Bewertung des Datensatzes. „Perspektivisch könnten wir mit dieser neuen Analysemethode viel schneller und zuverlässiger als bisher untersuchen, wie Zellen auf Umwelteinflüsse wie zum Beispiel Nanopartikel, Viren oder Karzinogene reagieren“, meint Dyhr.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.