Rekord-Tandemsolarzelle jetzt mit genauer wissenschaftlicher Anleitung

Foto der Tandem-Solarzelle aus Perowskit und Silizium. Der aktive Bereich in der Mitte des Wafers wird von der Silberelektrode umschlossen.

Foto der Tandem-Solarzelle aus Perowskit und Silizium. Der aktive Bereich in der Mitte des Wafers wird von der Silberelektrode umschlossen. © Johannes Beckedahl/ Lea Zimmermann / HZB

Die weltbesten Tandemsolarzellen aus einer Silizium-Unterzelle und einer Perowskit-Topzelle können heute ca. ein Drittel der einfallenden Sonnenstrahlung in elektrische Energie umwandeln. Das sind Rekordwerte, insbesondere für eine potentiell sehr preisgünstige Technologie. Ein Team am HZB liefert nun erstmals die wissenschaftlichen Daten und beschreibt in der renommierten Fachzeitschrift Science, wie diese Entwicklung gelungen ist.

„Diese Leistung war nur möglich, weil wir am HZB sowohl Expertise zu Silizium-Hetero-Solarzellen als auch zu Perowskit-Solarzellen aufgebaut haben und sehr eng zusammenarbeiten“, sagt Prof. Dr. Steve Albrecht. Er leitet am HZB eine Forschungsgruppe zu Perowskit-Tandemsolarzellen. So konnten die Perowskit-Fachleute aus dem HySPRINT Innovation Lab gemeinsam mit den Silizium-Experten vom PV-Kompetenzzentrum (PVcomB) bereits mehrfach Effizienz-Weltrekorde bei Tandem-Solarzellen erreichen.

Weltrekord im Wirkungsgrad mit Perowskit-Tandemsolarzellen

Auch die nun im Fachjournal Science erstmals genau beschriebene Tandemsolarzelle hatte einen Weltrekord im Wirkungsgrad erzielt und im Dezember 2022 damit Schlagzeilen erzeugt. Sie wandelt 32,5% des einfallenden Sonnenlichts in elektrische Energie um. Dieser Weltrekord blieb bis Mitte April 2023 erhalten, erst dann hat eine Gruppe aus dem PV-Lab im arabischen Forschungszentrum KAUST diesen Rekord übertroffen. Das Forschungsfeld ist äußerst wettbewerbsorientiert. Weltweit arbeiten viele Gruppen auf diesem Gebiet. Nun hat das HZB-Team wieder zuerst eine solide und wissenschaftlich streng begutachtete Fachpublikation mit genauen Datensätzen aus den Messungen sowie detaillierten Angaben zum Aufbau der Tandemzelle vorgelegt.

Albrecht setzte vor allem auf eine deutlich verbesserte Perowskit-Verbindung und eine raffinierte Modifikation der Oberfläche mittels eines neuartigen Moleküls Piperazinium Iodid. Sie wurde von den Postdocs Dr. Silvia Mariotti und Dr. Eike Köhnen entwickelt. Dadurch gelang es, die Ladungsrekombination weitgehend zu unterdrücken und die damit verbundenen Verluste deutlich zu reduzieren. Mit speziellen Messmethoden konnten die Forscher*innen die grundlegenden Prozesse an den Grenzflächen und in den einzelnen Schichten der Tandemzelle im Detail analysieren. Und dann – basierend auf einem vertieften Verständnis – weiter optimieren.

Die Entwicklungen wurden anschließend kombiniert und auf Tandemsolarzellen übertragen, wobei weitere Anpassungen der Topelektrode für eine verbesserten Optik hinzugefügt wurden. An der Herstellung und Entwicklung der Tandemzellen waren viele Expertinnen und Experten von verschiedenen Instituten beteiligt. So hat eine Gruppe an der Universität Potsdam opto-elektronische Messungen der Einzel und Tandemzellen durchgeführt. Die neuartigen Moleküle zur Modifikation der Oberfläche wurden im Joxe Mari Korta Center in San Sebastian, Spanien, synthetisiert. Ein Team der Technischen Universität in Kaunas, Litauen, hat dabei geholfen die neuen Perowskitverbindungen mit sehr hoher Filmqualität zu prozessieren. Erst die Kombination aller Modifikationen ermöglichte es, Höchstwerte der Photospannung (Leerlaufspannung), sowie des Photostroms und folglich in Punkto Effizienz zu erzielen.

Beeindruckende Entwicklung der letzten Jahre

In den letzten Jahren gab es eine kontinuierliche Steigerung der Wirkungsgradwerte durch verschiedene Forschungseinrichtungen und Photovoltaik-Firmen weltweit. Speziell die letzten zwei Jahre waren dabei sehr aufregend: Teams des HZB konnten Ende 2021 für Tandemsolarzellen aus Silizium und Perowskit den Rekordwert von knapp unter 30% (29,8%) erzielen. Sie hatten dafür spezielle, periodische Nanotexturen in die Solarzellen eingebracht. Im Sommer 2022 meldete die Ecole Polytechnique Fédérale de Lausanne (EPFL), Schweiz, eine zertifizierte Tandemzelle mit 31,3% Effizienz. Von Dezember 2022 bis Mitte April 2023 lag der Weltrekord mit 32,5% wieder am HZB, bis das KAUST Photovoltaics Laboratory in Saudi-Arabien eine Perowskit-Silizium-Tandemzelle mit 33;2% im Labor demonstriert hat. Diesen konnte das KAUST im Mai 2023 sogar auf 33,7% erhöhen. „Wir freuen uns über diese enormen Fortschritte in unserer Wissenschaftsdisziplin“, betont Albrecht.

„Sie geben uns die Hoffung, dass diese Technologie in den nächsten Jahren einen großen Beitrag zu einer nachhaltigen Energieversorgung im Kampf gegen den Klimawandel leisten kann, weil auch die Aufskalierung und industrielle Produktion von Perowskit/Silizium-Tandemsolarzellen machbar ist.“

Der wissenschaftliche Geschäftsführer des HZB, Prof. Bernd Rech, sagt: „Damit ist der Solarzellenwirkungsgrad Silizium/Perowskit-Tandemzellen jetzt in Bereichen, die bisher nur von teuren III/V Halbleitern erreicht wurden.“ Die Technologien zur Produktion solcher Tandemsolarzellen sind im Prinzip schon verfügbar. Nun geht es um weitere Verbesserungen im Bereich der Stabilität im Außeneinsatz.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.