BESSY II: Experimenteller Nachweis einer exotischen Quantenphase in Au2Pb

Die Abbildung zeigt die gemessene Energie-Impuls-Beziehung f&uuml;r Au<sub>2</sub>Pb. Das lineare Verhalten ist der Nachweis f&uuml;r ein Dirac-Semimetall. Zus&auml;tzlich wird ein Lifshitz-&Uuml;bergang beobachtet: Bei Temperaturen 223 K und darunter verhalten sich die Elektronen wie positiv geladene Teilchen, bei Raumtemperatur dagegen wie negativ geladene.&nbsp;

Die Abbildung zeigt die gemessene Energie-Impuls-Beziehung für Au2Pb. Das lineare Verhalten ist der Nachweis für ein Dirac-Semimetall. Zusätzlich wird ein Lifshitz-Übergang beobachtet: Bei Temperaturen 223 K und darunter verhalten sich die Elektronen wie positiv geladene Teilchen, bei Raumtemperatur dagegen wie negativ geladene.  © HZB

Ein Team am HZB hat die elektronische Struktur von Au2Pb an BESSY II durch winkelaufgelöste Photoemissionsspektroskopie über einen weiten Temperaturbereich untersucht: Die Ergebnisse zeigen die elektronische Struktur eines dreidimensionalen topologischen Dirac-Semimetalls und stehen im Einklang mit theoretischen Berechnungen.

Die experimentellen Daten zeigen die charakteristische Signatur eines Lifshitz-Übergangs. Die Studie erweitert die Palette der derzeit bekannten Materialien, die dreidimensionale Dirac-Phasen aufweisen. Außerdem zeigt der beobachtete Lifshitz-Übergang einen praktikablen Mechanismus auf, mit dem die Ladungsträgerart bei der Stromleitung umgeschaltet werden kann, ohne dass das Material mit Fremdatomen dotiert werden müsste. Zudem wird das Au2Pb als Kandidat für die Realisierung eines topologischen Supraleiters interessant.

Die Studie, die auch theoretische Rechnungen aus San Sebastian und Materialsynthese aus Princeton umfasst, wurde in der Zeitschrift Physical Review Letters als "Editor's Suggestion" ausgewählt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.