Super-Energiespeicher: Ladungstransport in MXenen untersucht

Das Experiment: Infrarotlicht regt im Wasserfilm Protonen zu Schwingungen an, die sich zwischen den Ti<sub>3</sub>C<sub>2</sub>-MXene-Schichten bewegen. Ihre Schwingungsmuster zeigen, dass sie sich anders verhalten als in einem dickeren Wasserfilm.

Das Experiment: Infrarotlicht regt im Wasserfilm Protonen zu Schwingungen an, die sich zwischen den Ti3C2-MXene-Schichten bewegen. Ihre Schwingungsmuster zeigen, dass sie sich anders verhalten als in einem dickeren Wasserfilm. © M. Künsting /HZB

MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.

Elektrische Energie aus Sonne oder Wind steht manchmal überreichlich zur Verfügung und muss rasch gespeichert werden. Herkömmliche Batterien können zwar große Energiemengen speichern, aber die Lade- und Entladevorgänge benötigen Zeit. Superkondensatoren hingegen laden sich zwar sehr schnell auf, sind aber in der Menge der gespeicherten Energie begrenzt.

Multitalent Pseudokondensator

Seit wenigen Jahren gibt es die neue Materialklasse der Pseudokondensatoren, die die Vorteile von Batterien mit denen von Superkondensatoren kombiniert. Besonders interessant sind dabei die so genannten MXene, die aus 2D-Übergangsmetallcarbiden und -nitriden bestehen. Ihre Struktur ähnelt einem Blätterteig, dabei sind die einzelnen Schichten durch einen dünnen Wasserfilm getrennt, der den Transport von Ladungen ermöglicht. Insbesondere die Titancarbid-MXene sind sehr leitfähig und besitzen stark negativ geladene hydrophile Oberflächen, in die positiv geladene Ionen wie Protonen effizient einwandern können. Die MXene für diese Studie hat eine Gruppe um Prof. Yury Gogotsi, Drexel University, USA, hergestellt.

Wie funktioniert der Ladungstransport ?

In den letzten Jahren war es bereits gelungen, in solchen MXenen die Energie von Protonen in hohem Ausmaß zu speichern und wieder freizusetzen. Unklar war jedoch, ob die Ladungen hauptsächlich durch die Adsorption von Protonen an der MXene-Oberfläche oder durch die Desolvatisierung von Protonen in der MXene-Zwischenschicht gespeichert werden. Die Erwartung war, dass sich Protonen in dem extrem dünnen Wasserfilm, der aus nur 2-3 Moleküllagen Wasser besteht, anders verhalten als in Wasservolumen. Bislang war es jedoch nicht möglich, Protonen im Inneren einer MXene-Elektrode während des Ladens und Entladens zu charakterisieren.

Schwingungsmuster untersucht

Dies ist nun einem Team um Dr. Tristan Petit am HZB erstmals gelungen: Die Forschenden konnten an der Röntgenquelle BESSY II die Schwingungsmoden von Protonen analysieren, die sie zuvor mit Infrarotlicht angeregt hatten. Postdoc Dr. Mailis Lounasvuori entwickelte eine elektrochemische „operando-Zelle“, um die Prozesse im Inneren von Titankarbid-MXenen während des Lade- und Entladevorgangs zu analysieren. Dabei gelang es ihr, die spezielle Signatur der Protonen in dem eingeschlossenen Wasser zwischen den MXene-Schichten herauszudestillieren. "Diese Schwingungsmuster unterscheiden sich stark von denen, die wir für Protonen in einer dreidimensionalen Wasserumgebung beobachten würden,“ sagt sie.

2D-Umgebung hilft

"Wassermoleküle absorbieren Infrarotstrahlung besonders stark, während MXene in diesem Energiebereich nur sehr wenig Licht emittieren. Deshalb war die IR-Spektroskopie ideal für unsere Fragestellung", erklärt Petit. Die Ergebnisse zeigen, dass Protonen im dünnen Wasserfilm weitaus weniger Wassermoleküle benötigen, um in Lösung zu gehen als im Wasservolumen. Dies könnte auch erklären, warum sich die MXene so rasch aufladen oder entladen lassen. „MXene sind damit ein wunderbares Modellsystem, um Eigenschaften von zweidimensionalen chemischen Systemen zu untersuchen. Wir könnten dabei auch noch andere unbekannte Eigenschaften entdecken“, meint Petit.

Anmerkung: Petit hat 2015 ein Freigeist-Stipendium erhalten, um Wasserphasen in Kohlenstoff-Nanomaterialien, einschließlich MXenen, zu untersuchen. Im Jahr 2020 wurde ihm ein ERC Starting Grant zugesprochen, um seine Forschung zu Energiespeichermechanismen in diesen Materialien auszubauen. Die Methoden, die Petit entwickelt, lassen sich nicht nur auf Protonen, sondern auch auf Kationen, z. B. Li+-Ionen anwenden, die in MXene-Materialien diffundieren, um neue pseudokapazitive Energiespeichermechanismen zu entschlüsseln.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.