Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien

3D Rekonstruktion der Bildung eines Kupferkristallits in einem Kupfersulfidpartikel (CuS) während der Entladung einer Lithium-CuS-Feststoffbatterie. Die Volumenausdehnung kann dabei zur Bildung von Rissen (blau) führen.

3D Rekonstruktion der Bildung eines Kupferkristallits in einem Kupfersulfidpartikel (CuS) während der Entladung einer Lithium-CuS-Feststoffbatterie. Die Volumenausdehnung kann dabei zur Bildung von Rissen (blau) führen. © K. Dong / HZB

Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.

 

Feststoffbatterien (solid-state batteries, SSBs) gelten als aussichtsreiche Batterietechnologie der Zukunft. Gegenüber den aktuellen Lithiumionenbatterien, die in Mobiltelefonen, Laptops und Elektrofahrzeugen eingesetzt werden, versprechen SSBs noch höhere Energiedichten und vor allem auch eine bessere Sicherheit. Denn die leicht brennbaren, flüssigen Elektrolyte von Lithiumionenbatterien werden hier durch einen Feststoff ersetzt, so dass die gesamte Batterie nur aus „festen Materialien“ besteht. Um eine solche Batterie herzustellen, müssen Anode, Kathode und Elektrolyt unter hohem Druck miteinander verpresst werden.

Einer Gruppe aus den Helmholtz-Zentren Berlin (HZB) und Hereon, der Humboldt-Universität zu Berlin und der Bundesanstalt für Materialforschung und -prüfung ist es nun gelungen, die Prozesse innerhalb einer solchen Feststoffbatterie während des Ladens und Entladens zu beobachten. Die Arbeitsgruppen von Prof. Philipp Adelhelm und Dr. Ingo Manke untersuchten das Verhalten von Kupfersulfid, einem natürlich vorkommenden Mineral, als Kathode in einer Feststoffbatterie. Als Anode wurde Lithium eingesetzt. Eine Besonderheit der Batterie ist, dass sich während der Entladung große Kupferkristallite bilden. Mit Hilfe von Röntgentomographie ließ sich diese Bildung der Kristallite eingehend untersuchen. So konnte die Entlade- und Ladereaktion in 3D nachvollzogen und zum ersten Mal die Bewegung der Kathodenpartikel innerhalb der Batterie verfolgt werden. Zudem zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt. „Für die aufwendigen Messungen mussten wir einige Kompromisse eingehen und viele Referenzexperimente durchführen“ erklären Dr. Zhenggang Zhang und Dr. Kang Dong, die gemeinsamen Erstautoren der Publikation. „Die Ergebnisse geben aber detaillierte Einblicke in das Innenleben einer Feststoffbatterie und zeigen, wie sich deren Eigenschaften verbessern lassen“.

Hinweis:

Das Projekt wurde gefördert durch Mittel des Bundesministeriums für Bildung und Forschung (Projekte NASEBER und KAROFEST) und des China Scholarship Council. Am Helmholtz-Zentrum Berlin wird die Erforschung von Feststoffbatterien mittels Tomographie demnächst noch weiter ausgebaut. So fördert das Bundesministerium für Bildung und Forschung den Aufbau eines neuen Tomographielabors (TomoFestBattLab) mit 1,86 Millionen Euro.

P. Adelhelm/I. Manke

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.