Europäische Pilotlinie für innovative Tandem-Solarzellen

Produktionslinie für Solarzellen.

Produktionslinie für Solarzellen. © Qcells

PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.

Ziel von PEPPERONI ist es, Hindernisse für die Markteinführung der Tandem-Solartechnologie zu ermitteln und zu beseitigen und Grundlagen für neue Produktionskapazitäten in Europa zu schaffen. Eine Pilotlinie wird am europäischen Hauptsitz von Qcells in Thalheim, Deutschland, errichtet. Das Projekt startete am 1. November 2022 mit der langfristigen Vision, Europa eine industrielle Führungsrolle in der PV-Produktion auf dem Weltmarkt zu ermöglichen. 

Im Rahmen von PEPPERONI wird am europäischen Hauptsitz von Qcells in Thalheim, Deutschland, eine Pilotlinie für Tandemzellen vom industriellen Typ eingerichtet, die innovative Anlagen, Prozesse und Materialien zur Herstellung von hocheffizienten Tandemzellen und -modulen umfasst. Der Ansatz von PEPPERONI verspricht einen schnellen und wettbewerbsfähigen Weg zur Massenproduktion von PV-Modulen mit hoher Leistung und langer Lebensdauer.

Fabian Fertig, Director Global R&D Wafer & Cells bei Qcells, sagte: "Qcells ist stolz darauf, Teil des PEPPERONI-Konsortiums mit seinen Weltklasse-Technologiepartnern zu sein. Diese Forschung verspricht, neue Wege bei der Weiterentwicklung der Perowskit-Silizium-Tandem-Solarzellen- und Modultechnologie zu beschreiten. In einer Zeit, in der das derzeitige Energiesystem einem noch nie dagewesenen Druck ausgesetzt ist, ist es spannend, diesen ersten und transformativen Schritt in Richtung einer industriellen Fertigung der nächsten Generation von PV-Technologien in Europa zu verwirklichen."

Bernd Stannowski, Leiter der Abteilung Industriekompatible Prozesse, Solarzellen und -module am HZB, fügte hinzu: "Am HZB haben wir die Tandemtechnologie im Labormaßstab auf Weltrekordniveau entwickelt. Wir freuen uns nun darauf, im PEPPERONI-Konsortium mit Partnern aus Wissenschaft und Industrie zusammenzuarbeiten, um diese neue und vielversprechende Technologie gemeinsam zu skalieren und in die Industrie zu übertragen."

Dies ist nur ein Auszug aus der Pressemitteilung. Bitte lesen Sie die vollständige Pressemitteilung hier >

 

Über das Konsortium

PEPPERONI bündelt europäisches Wissen und Know-how von der Grundlagenforschung über die Erprobung und Entwicklung von Solarzellen im kleinen Maßstab bis hin zur industriellen Fertigung großer Solarmodule im Hochdurchsatzverfahren. Dem PEPPERONI-Konsortium gehören 17 Partner aus 12 Ländern in ganz Europa an. PEPPERONI wird von der EU im Rahmen von Horizon Europe kofinanziert und vom Schweizer Staatssekretariat für Bildung, Forschung und Innovation (SBFI) unterstützt.

Qcells/red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.